Information retrieval: recent advances and beyond

KA Hambarde, H Proenca - IEEE Access, 2023 - ieeexplore.ieee.org
This paper provides an extensive and thorough overview of the models and techniques
utilized in the first and second stages of the typical information retrieval processing chain …

Text and code embeddings by contrastive pre-training

A Neelakantan, T Xu, R Puri, A Radford, JM Han… - arxiv preprint arxiv …, 2022 - arxiv.org
Text embeddings are useful features in many applications such as semantic search and
computing text similarity. Previous work typically trains models customized for different use …

Colbertv2: Effective and efficient retrieval via lightweight late interaction

K Santhanam, O Khattab, J Saad-Falcon… - arxiv preprint arxiv …, 2021 - arxiv.org
Neural information retrieval (IR) has greatly advanced search and other knowledge-
intensive language tasks. While many neural IR methods encode queries and documents …

Large dual encoders are generalizable retrievers

J Ni, C Qu, J Lu, Z Dai, GH Ábrego, J Ma… - arxiv preprint arxiv …, 2021 - arxiv.org
It has been shown that dual encoders trained on one domain often fail to generalize to other
domains for retrieval tasks. One widespread belief is that the bottleneck layer of a dual …

Promptagator: Few-shot dense retrieval from 8 examples

Z Dai, VY Zhao, J Ma, Y Luan, J Ni, J Lu… - arxiv preprint arxiv …, 2022 - arxiv.org
Much recent research on information retrieval has focused on how to transfer from one task
(typically with abundant supervised data) to various other tasks where supervision is limited …

On the risk of misinformation pollution with large language models

Y Pan, L Pan, W Chen, P Nakov, MY Kan… - arxiv preprint arxiv …, 2023 - arxiv.org
In this paper, we comprehensively investigate the potential misuse of modern Large
Language Models (LLMs) for generating credible-sounding misinformation and its …

Dense text retrieval based on pretrained language models: A survey

WX Zhao, J Liu, R Ren, JR Wen - ACM Transactions on Information …, 2024 - dl.acm.org
Text retrieval is a long-standing research topic on information seeking, where a system is
required to return relevant information resources to user's queries in natural language. From …

Autoregressive search engines: Generating substrings as document identifiers

M Bevilacqua, G Ottaviano, P Lewis… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Knowledge-intensive language tasks require NLP systems to both provide the
correct answer and retrieve supporting evidence for it in a given corpus. Autoregressive …

Conversational information seeking

H Zamani, JR Trippas, J Dalton… - … and Trends® in …, 2023 - nowpublishers.com
Conversational information seeking (CIS) is concerned with a sequence of interactions
between one or more users and an information system. Interactions in CIS are primarily …

Query performance prediction for neural IR: Are we there yet?

G Faggioli, T Formal, S Marchesin, S Clinchant… - … on Information Retrieval, 2023 - Springer
Abstract Evaluation in Information Retrieval (IR) relies on post-hoc empirical procedures,
which are time-consuming and expensive operations. To alleviate this, Query Performance …