Personalized prompt learning for explainable recommendation

L Li, Y Zhang, L Chen - ACM Transactions on Information Systems, 2023 - dl.acm.org
Providing user-understandable explanations to justify recommendations could help users
better understand the recommended items, increase the system's ease of use, and gain …

Counterfactual explainable recommendation

J Tan, S Xu, Y Ge, Y Li, X Chen, Y Zhang - Proceedings of the 30th ACM …, 2021 - dl.acm.org
By providing explanations for users and system designers to facilitate better understanding
and decision making, explainable recommendation has been an important research …

A survey on trustworthy recommender systems

Y Ge, S Liu, Z Fu, J Tan, Z Li, S Xu, Y Li, Y **an… - ACM Transactions on …, 2024 - dl.acm.org
Recommender systems (RS), serving at the forefront of Human-centered AI, are widely
deployed in almost every corner of the web and facilitate the human decision-making …

Towards personalized fairness based on causal notion

Y Li, H Chen, S Xu, Y Ge, Y Zhang - … of the 44th International ACM SIGIR …, 2021 - dl.acm.org
Recommender systems are gaining increasing and critical impacts on human and society
since a growing number of users use them for information seeking and decision making …

Personalized transformer for explainable recommendation

L Li, Y Zhang, L Chen - arxiv preprint arxiv:2105.11601, 2021 - arxiv.org
Personalization of natural language generation plays a vital role in a large spectrum of
tasks, such as explainable recommendation, review summarization and dialog systems. In …

Fairness in recommendation: A survey

Y Li, H Chen, S Xu, Y Ge, J Tan, S Liu… - arxiv preprint arxiv …, 2022 - arxiv.org
As one of the most pervasive applications of machine learning, recommender systems are
playing an important role on assisting human decision making. The satisfaction of users and …

Explainable fairness in recommendation

Y Ge, J Tan, Y Zhu, Y **a, J Luo, S Liu, Z Fu… - Proceedings of the 45th …, 2022 - dl.acm.org
Existing research on fairness-aware recommendation has mainly focused on the
quantification of fairness and the development of fair recommendation models, neither of …

Path language modeling over knowledge graphsfor explainable recommendation

S Geng, Z Fu, J Tan, Y Ge, G De Melo… - Proceedings of the ACM …, 2022 - dl.acm.org
To facilitate human decisions with credible suggestions, personalized recommender
systems should have the ability to generate corresponding explanations while making …

Large scale foundation models for intelligent manufacturing applications: a survey

H Zhang, SD Semujju, Z Wang, X Lv, K Xu… - Journal of Intelligent …, 2025 - Springer
Although the applications of artificial intelligence especially deep learning have greatly
improved various aspects of intelligent manufacturing, they still face challenges for broader …

Fairness in recommendation: Foundations, methods, and applications

Y Li, H Chen, S Xu, Y Ge, J Tan, S Liu… - ACM Transactions on …, 2023 - dl.acm.org
As one of the most pervasive applications of machine learning, recommender systems are
playing an important role on assisting human decision-making. The satisfaction of users and …