The rise and potential of large language model based agents: A survey

Z **, W Chen, X Guo, W He, Y Ding, B Hong… - Science China …, 2025 - Springer
For a long time, researchers have sought artificial intelligence (AI) that matches or exceeds
human intelligence. AI agents, which are artificial entities capable of sensing the …

Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing

P Liu, W Yuan, J Fu, Z Jiang, H Hayashi… - ACM Computing …, 2023 - dl.acm.org
This article surveys and organizes research works in a new paradigm in natural language
processing, which we dub “prompt-based learning.” Unlike traditional supervised learning …

A survey of large language models

WX Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou… - arxiv preprint arxiv …, 2023 - arxiv.org
Language is essentially a complex, intricate system of human expressions governed by
grammatical rules. It poses a significant challenge to develop capable AI algorithms for …

Flamingo: a visual language model for few-shot learning

JB Alayrac, J Donahue, P Luc… - Advances in neural …, 2022 - proceedings.neurips.cc
Building models that can be rapidly adapted to novel tasks using only a handful of annotated
examples is an open challenge for multimodal machine learning research. We introduce …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arxiv preprint arxiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

Extracting training data from large language models

N Carlini, F Tramer, E Wallace, M Jagielski… - 30th USENIX Security …, 2021 - usenix.org
It has become common to publish large (billion parameter) language models that have been
trained on private datasets. This paper demonstrates that in such settings, an adversary can …

Three types of incremental learning

GM Van de Ven, T Tuytelaars, AS Tolias - Nature Machine Intelligence, 2022 - nature.com
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …

Learning to prompt for continual learning

Z Wang, Z Zhang, CY Lee, H Zhang… - Proceedings of the …, 2022 - openaccess.thecvf.com
The mainstream paradigm behind continual learning has been to adapt the model
parameters to non-stationary data distributions, where catastrophic forgetting is the central …

Continual test-time domain adaptation

Q Wang, O Fink, L Van Gool… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain
without using any source data. Existing works mainly consider the case where the target …