Convergence of inductive sequences of spectral triples for the spectral propinquity

C Farsi, F Latrémolière, J Packer - Advances in Mathematics, 2024 - Elsevier
In the context of metric geometry, we introduce a new necessary and sufficient condition for
the convergence of an inductive sequence of quantum compact metric spaces for the …

[HTML][HTML] Convergence of Fourier truncations for compact quantum groups and finitely generated groups

MA Rieffel - Journal of Geometry and Physics, 2023 - Elsevier
We generalize the Fejér-Riesz operator systems defined for the circle group by Connes and
van Suijlekom to the setting of compact matrix quantum groups and their ergodic actions on …

The Podleś spheres converge to the sphere

K Aguilar, J Kaad, D Kyed - Communications in Mathematical Physics, 2022 - Springer
We prove that the Podleś spheres S q 2 converge in quantum Gromov–Hausdorff distance to
the classical 2-sphere as the deformation parameter q tends to 1. Moreover, we construct aq …

The Gromov-Hausdorff propinquity for metric spectral triples

F Latrémolière - Advances in Mathematics, 2022 - Elsevier
We define a metric on the class of metric spectral triples, which is null exactly between
unitarily equivalent spectral triples. This metric dominates the propinquity, and thus implies …

Continuity of the spectrum of Dirac operators of spectral triples for the spectral propinquity

F Latrémolière - Mathematische Annalen, 2024 - Springer
The spectral propinquity is a distance, up to unitary equivalence, on the class of metric
spectral triples. We prove in this paper that if a sequence of metric spectral triples converges …

External products of spectral metric spaces

J Kaad - arxiv preprint arxiv:2304.03979, 2023 - arxiv.org
In this paper, we present a characterization of compact quantum metric spaces in terms of
finite dimensional approximations. This characterization naturally leads to the introduction of …

The quantum metric structure of quantum SU (2)

J Kaad, D Kyed - arxiv preprint arxiv:2205.06043, 2022 - arxiv.org
We introduce a two parameter family of Dirac operators on quantum SU (2) and analyse
their properties from the point of view of non-commutative metric geometry. It is shown that …

Curvature and Weitzenbock formula for the Podle\'{s} quantum sphere

B Mesland, A Rennie - arxiv preprint arxiv:2406.18483, 2024 - arxiv.org
We prove that there is a unique Levi-Civita connection on the one-forms of the Dabrowski-
Sitarz spectral triple for the Podle\'{s} sphere $ S^{2} _ {q} $. We compute the full curvature …

Quantum metrics on crossed products with groups of polynomial growth

A Austad, J Kaad, D Kyed - Transactions of the American Mathematical …, 2025 - ams.org
We show how to equip the crossed product between a group of polynomial growth and a
compact quantum metric space with a compact quantum metric space structure. When the …

The dual modular Gromov–Hausdorff propinquity and completeness

F Latrémolière - Journal of Noncommutative Geometry, 2021 - ems.press
We introduce in this paper the dual modular propinquity, a complete metric, up to full
modular quantum isometry, on the class of metrized quantum vector bundles, ie of Hilbert …