Big data analytics for intelligent manufacturing systems: A review

J Wang, C Xu, J Zhang, R Zhong - Journal of Manufacturing Systems, 2022 - Elsevier
With the development of Internet of Things (IoT), 5 G, and cloud computing technologies, the
amount of data from manufacturing systems has been increasing rapidly. With massive …

Applications of machine learning to machine fault diagnosis: A review and roadmap

Y Lei, B Yang, X Jiang, F Jia, N Li, AK Nandi - Mechanical systems and …, 2020 - Elsevier
Intelligent fault diagnosis (IFD) refers to applications of machine learning theories to
machine fault diagnosis. This is a promising way to release the contribution from human …

Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain

Y **ao, H Shao, SY Han, Z Huo… - IEEE/ASME Transactions …, 2022 - ieeexplore.ieee.org
Unsupervised cross-domain fault diagnosis of bearings has practical significance; however,
the existing studies still face some problems. For example, transfer diagnosis scenarios are …

Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice

E Zio - Reliability Engineering & System Safety, 2022 - Elsevier
We are performing the digital transition of industry, living the 4th industrial revolution,
building a new World in which the digital, physical and human dimensions are interrelated in …

Few shot cross equipment fault diagnosis method based on parameter optimization and feature mertic

H Tao, L Cheng, J Qiu… - Measurement Science and …, 2022 - iopscience.iop.org
With the rapid development of industrial informatization and deep learning technology,
modern data-driven fault diagnosis (MIFD) methods based on deep learning have been …

[HTML][HTML] A survey on big data-enabled innovative online education systems during the COVID-19 pandemic

Y Cui, Z Ma, L Wang, A Yang, Q Liu, S Kong… - Journal of Innovation & …, 2023 - Elsevier
With the spread of COVID-19 around the world, the education industry faces enormous
challenges. Some colleges and universities have launched online teaching. Comprehensive …

Fault detection and diagnosis for rotating machinery: A model based on convolutional LSTM, Fast Fourier and continuous wavelet transforms

M Jalayer, C Orsenigo, C Vercellis - Computers in Industry, 2021 - Elsevier
Abstract Fault Detection and Diagnosis (FDD) of rotating machinery plays a key role in
reducing the maintenance costs of the manufacturing systems. How to improve the FDD …

Deep convolutional transfer learning network: A new method for intelligent fault diagnosis of machines with unlabeled data

L Guo, Y Lei, S **ng, T Yan, N Li - IEEE Transactions on …, 2018 - ieeexplore.ieee.org
The success of intelligent fault diagnosis of machines relies on the following two conditions:
1) labeled data with fault information are available; and 2) the training and testing data are …

Federated learning for machinery fault diagnosis with dynamic validation and self-supervision

W Zhang, X Li, H Ma, Z Luo, X Li - Knowledge-Based Systems, 2021 - Elsevier
Intelligent data-driven machinery fault diagnosis methods have been successfully and
popularly developed in the past years. While promising diagnostic performance has been …

A comprehensive review on convolutional neural network in machine fault diagnosis

J Jiao, M Zhao, J Lin, K Liang - Neurocomputing, 2020 - Elsevier
With the rapid development of manufacturing industry, machine fault diagnosis has become
increasingly significant to ensure safe equipment operation and production. Consequently …