Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Optimal transport for single-cell and spatial omics
High-throughput single-cell profiling provides an unprecedented ability to uncover the
molecular states of millions of cells. These technologies are, however, destructive to cells …
molecular states of millions of cells. These technologies are, however, destructive to cells …
Recent advances in optimal transport for machine learning
Recently, Optimal Transport has been proposed as a probabilistic framework in Machine
Learning for comparing and manipulating probability distributions. This is rooted in its rich …
Learning for comparing and manipulating probability distributions. This is rooted in its rich …
The falcon series of open language models
E Almazrouei, H Alobeidli, A Alshamsi… - arxiv preprint arxiv …, 2023 - arxiv.org
We introduce the Falcon series: 7B, 40B, and 180B parameters causal decoder-only models
trained on a diverse high-quality corpora predominantly assembled from web data. The …
trained on a diverse high-quality corpora predominantly assembled from web data. The …
Scannet++: A high-fidelity dataset of 3d indoor scenes
We present ScanNet++, a large-scale dataset that couples together capture of high-quality
and commodity-level geometry and color of indoor scenes. Each scene is captured with a …
and commodity-level geometry and color of indoor scenes. Each scene is captured with a …
Improving and generalizing flow-based generative models with minibatch optimal transport
Continuous normalizing flows (CNFs) are an attractive generative modeling technique, but
they have thus far been held back by limitations in their simulation-based maximum …
they have thus far been held back by limitations in their simulation-based maximum …
Diffusion schrödinger bridge matching
Solving transport problems, ie finding a map transporting one given distribution to another,
has numerous applications in machine learning. Novel mass transport methods motivated …
has numerous applications in machine learning. Novel mass transport methods motivated …
Imitating human behaviour with diffusion models
Diffusion models have emerged as powerful generative models in the text-to-image domain.
This paper studies their application as observation-to-action models for imitating human …
This paper studies their application as observation-to-action models for imitating human …
Equivariant flow matching
Normalizing flows are a class of deep generative models that are especially interesting for
modeling probability distributions in physics, where the exact likelihood of flows allows …
modeling probability distributions in physics, where the exact likelihood of flows allows …
Nersemble: Multi-view radiance field reconstruction of human heads
We focus on reconstructing high-fidelity radiance fields of human heads, capturing their
animations over time, and synthesizing re-renderings from novel viewpoints at arbitrary time …
animations over time, and synthesizing re-renderings from novel viewpoints at arbitrary time …
Revisiting over-smoothing and over-squashing using ollivier-ricci curvature
Abstract Graph Neural Networks (GNNs) had been demonstrated to be inherently
susceptible to the problems of over-smoothing and over-squashing. These issues prohibit …
susceptible to the problems of over-smoothing and over-squashing. These issues prohibit …