A comprehensive survey on pretrained foundation models: A history from bert to chatgpt

C Zhou, Q Li, C Li, J Yu, Y Liu, G Wang… - International Journal of …, 2024 - Springer
Abstract Pretrained Foundation Models (PFMs) are regarded as the foundation for various
downstream tasks across different data modalities. A PFM (eg, BERT, ChatGPT, GPT-4) is …

Deep learning--based text classification: a comprehensive review

S Minaee, N Kalchbrenner, E Cambria… - ACM computing …, 2021 - dl.acm.org
Deep learning--based models have surpassed classical machine learning--based
approaches in various text classification tasks, including sentiment analysis, news …

How close is chatgpt to human experts? comparison corpus, evaluation, and detection

B Guo, X Zhang, Z Wang, M Jiang, J Nie, Y Ding… - arxiv preprint arxiv …, 2023 - arxiv.org
The introduction of ChatGPT has garnered widespread attention in both academic and
industrial communities. ChatGPT is able to respond effectively to a wide range of human …

Poisoning web-scale training datasets is practical

N Carlini, M Jagielski… - … IEEE Symposium on …, 2024 - ieeexplore.ieee.org
Deep learning models are often trained on distributed, web-scale datasets crawled from the
internet. In this paper, we introduce two new dataset poisoning attacks that intentionally …

A-okvqa: A benchmark for visual question answering using world knowledge

D Schwenk, A Khandelwal, C Clark, K Marino… - European conference on …, 2022 - Springer
Abstract The Visual Question Answering (VQA) task aspires to provide a meaningful testbed
for the development of AI models that can jointly reason over visual and natural language …

Ties-merging: Resolving interference when merging models

P Yadav, D Tam, L Choshen… - Advances in Neural …, 2024 - proceedings.neurips.cc
Transfer learning–ie, further fine-tuning a pre-trained model on a downstream task–can
confer significant advantages, including improved downstream performance, faster …

Metaicl: Learning to learn in context

S Min, M Lewis, L Zettlemoyer, H Hajishirzi - arxiv preprint arxiv …, 2021 - arxiv.org
We introduce MetaICL (Meta-training for In-Context Learning), a new meta-training
framework for few-shot learning where a pretrained language model is tuned to do in …

A survey on text classification: From traditional to deep learning

Q Li, H Peng, J Li, C **a, R Yang, L Sun… - ACM Transactions on …, 2022 - dl.acm.org
Text classification is the most fundamental and essential task in natural language
processing. The last decade has seen a surge of research in this area due to the …

An introduction to deep learning in natural language processing: Models, techniques, and tools

I Lauriola, A Lavelli, F Aiolli - Neurocomputing, 2022 - Elsevier
Abstract Natural Language Processing (NLP) is a branch of artificial intelligence that
involves the design and implementation of systems and algorithms able to interact through …

Delta tuning: A comprehensive study of parameter efficient methods for pre-trained language models

N Ding, Y Qin, G Yang, F Wei, Z Yang, Y Su… - arxiv preprint arxiv …, 2022 - arxiv.org
Despite the success, the process of fine-tuning large-scale PLMs brings prohibitive
adaptation costs. In fact, fine-tuning all the parameters of a colossal model and retaining …