Finding the optimal probe state for multiparameter quantum metrology using conic programming

M Hayashi, Y Ouyang - npj Quantum Information, 2024 - nature.com
The ultimate precision in quantum sensing could be achieved using optimal quantum probe
states. However, current quantum sensing protocols do not use probe states optimally …

Multi-parameter quantum estimation of single-and two-mode pure Gaussian states

G Bressanini, MG Genoni, MS Kim… - arxiv preprint arxiv …, 2024 - arxiv.org
We discuss the ultimate precision bounds on the multiparameter estimation of single-and
two-mode pure Gaussian states. By leveraging on previous approaches that focused on the …

Holevo Cram\'{e} r-Rao bound for multi-parameter estimation in nonlinear interferometers

M Zhou, H Ma, L Chen, W Zhang, CH Yuan - arxiv preprint arxiv …, 2025 - arxiv.org
Due to the potential of quantum advantage to surpass the standard quantum limit (SQL), the
nonlinear interferometers have garnered significant attention from researchers in the field of …

Holevo Cram\'er-Rao bound: How close can we get without entangling measurements?

A Das, LO Conlon, J Suzuki, SK Yung, PK Lam… - arxiv preprint arxiv …, 2024 - arxiv.org
In multi-parameter quantum metrology, the resource of entanglement can lead to an
increase in efficiency of the estimation process. Entanglement can be used in the state …

Role of the extended Hilbert space in the attainability of the Quantum Cram\'er-Rao bound for multiparameter estimation

LO Conlon, J Suzuki, PK Lam, SM Assad - arxiv preprint arxiv:2404.01520, 2024 - arxiv.org
The symmetric logarithmic derivative Cram\'er-Rao bound (SLDCRB) provides a
fundamental limit to the minimum variance with which a set of unknown parameters can be …