Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities
Few-shot learning (FSL) has emerged as an effective learning method and shows great
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
potential. Despite the recent creative works in tackling FSL tasks, learning valid information …
Advances and challenges in meta-learning: A technical review
Meta-learning empowers learning systems with the ability to acquire knowledge from
multiple tasks, enabling faster adaptation and generalization to new tasks. This review …
multiple tasks, enabling faster adaptation and generalization to new tasks. This review …
Transformers learn in-context by gradient descent
At present, the mechanisms of in-context learning in Transformers are not well understood
and remain mostly an intuition. In this paper, we suggest that training Transformers on auto …
and remain mostly an intuition. In this paper, we suggest that training Transformers on auto …
Fast model editing at scale
While large pre-trained models have enabled impressive results on a variety of downstream
tasks, the largest existing models still make errors, and even accurate predictions may …
tasks, the largest existing models still make errors, and even accurate predictions may …
Defrcn: Decoupled faster r-cnn for few-shot object detection
L Qiao, Y Zhao, Z Li, X Qiu, J Wu… - Proceedings of the …, 2021 - openaccess.thecvf.com
Few-shot object detection, which aims at detecting novel objects rapidly from extremely few
annotated examples of previously unseen classes, has attracted significant research interest …
annotated examples of previously unseen classes, has attracted significant research interest …
Personalized federated learning with theoretical guarantees: A model-agnostic meta-learning approach
Abstract In Federated Learning, we aim to train models across multiple computing units
(users), while users can only communicate with a common central server, without …
(users), while users can only communicate with a common central server, without …
A survey of meta-reinforcement learning
While deep reinforcement learning (RL) has fueled multiple high-profile successes in
machine learning, it is held back from more widespread adoption by its often poor data …
machine learning, it is held back from more widespread adoption by its often poor data …
Personalized federated learning using hypernetworks
Personalized federated learning is tasked with training machine learning models for multiple
clients, each with its own data distribution. The goal is to train personalized models …
clients, each with its own data distribution. The goal is to train personalized models …
Meta-learning in neural networks: A survey
The field of meta-learning, or learning-to-learn, has seen a dramatic rise in interest in recent
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
years. Contrary to conventional approaches to AI where tasks are solved from scratch using …
Deepemd: Few-shot image classification with differentiable earth mover's distance and structured classifiers
In this paper, we address the few-shot classification task from a new perspective of optimal
matching between image regions. We adopt the Earth Mover's Distance (EMD) as a metric to …
matching between image regions. We adopt the Earth Mover's Distance (EMD) as a metric to …