Deep learning for 3d point clouds: A survey

Y Guo, H Wang, Q Hu, H Liu, L Liu… - IEEE transactions on …, 2020 - ieeexplore.ieee.org
Point cloud learning has lately attracted increasing attention due to its wide applications in
many areas, such as computer vision, autonomous driving, and robotics. As a dominating …

Autonomous driving system: A comprehensive survey

J Zhao, W Zhao, B Deng, Z Wang, F Zhang… - Expert Systems with …, 2024 - Elsevier
Automation is increasingly at the forefront of transportation research, with the potential to
bring fully autonomous vehicles to our roads in the coming years. This comprehensive …

Pointnext: Revisiting pointnet++ with improved training and scaling strategies

G Qian, Y Li, H Peng, J Mai… - Advances in neural …, 2022 - proceedings.neurips.cc
PointNet++ is one of the most influential neural architectures for point cloud understanding.
Although the accuracy of PointNet++ has been largely surpassed by recent networks such …

Point transformer

H Zhao, L Jiang, J Jia, PHS Torr… - Proceedings of the …, 2021 - openaccess.thecvf.com
Self-attention networks have revolutionized natural language processing and are making
impressive strides in image analysis tasks such as image classification and object detection …

Pct: Point cloud transformer

MH Guo, JX Cai, ZN Liu, TJ Mu, RR Martin… - Computational Visual …, 2021 - Springer
The irregular domain and lack of ordering make it challenging to design deep neural
networks for point cloud processing. This paper presents a novel framework named Point …

Point-bert: Pre-training 3d point cloud transformers with masked point modeling

X Yu, L Tang, Y Rao, T Huang… - Proceedings of the …, 2022 - openaccess.thecvf.com
We present Point-BERT, a novel paradigm for learning Transformers to generalize the
concept of BERT onto 3D point cloud. Following BERT, we devise a Masked Point Modeling …

Stratified transformer for 3d point cloud segmentation

X Lai, J Liu, L Jiang, L Wang, H Zhao… - Proceedings of the …, 2022 - openaccess.thecvf.com
Abstract 3D point cloud segmentation has made tremendous progress in recent years. Most
current methods focus on aggregating local features, but fail to directly model long-range …

Masked autoencoders for point cloud self-supervised learning

Y Pang, W Wang, FEH Tay, W Liu, Y Tian… - European conference on …, 2022 - Springer
As a promising scheme of self-supervised learning, masked autoencoding has significantly
advanced natural language processing and computer vision. Inspired by this, we propose a …

An end-to-end transformer model for 3d object detection

I Misra, R Girdhar, A Joulin - Proceedings of the IEEE/CVF …, 2021 - openaccess.thecvf.com
We propose 3DETR, an end-to-end Transformer based object detection model for 3D point
clouds. Compared to existing detection methods that employ a number of 3D-specific …

Point transformer v2: Grouped vector attention and partition-based pooling

X Wu, Y Lao, L Jiang, X Liu… - Advances in Neural …, 2022 - proceedings.neurips.cc
As a pioneering work exploring transformer architecture for 3D point cloud understanding,
Point Transformer achieves impressive results on multiple highly competitive benchmarks. In …