Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
A comprehensive survey on test-time adaptation under distribution shifts
Abstract Machine learning methods strive to acquire a robust model during the training
process that can effectively generalize to test samples, even in the presence of distribution …
process that can effectively generalize to test samples, even in the presence of distribution …
Inductive biases for deep learning of higher-level cognition
A fascinating hypothesis is that human and animal intelligence could be explained by a few
principles (rather than an encyclopaedic list of heuristics). If that hypothesis was correct, we …
principles (rather than an encyclopaedic list of heuristics). If that hypothesis was correct, we …
Test-time prompt tuning for zero-shot generalization in vision-language models
Pre-trained vision-language models (eg, CLIP) have shown promising zero-shot
generalization in many downstream tasks with properly designed text prompts. Instead of …
generalization in many downstream tasks with properly designed text prompts. Instead of …
Continual test-time domain adaptation
Test-time domain adaptation aims to adapt a source pre-trained model to a target domain
without using any source data. Existing works mainly consider the case where the target …
without using any source data. Existing works mainly consider the case where the target …
Efficient test-time model adaptation without forgetting
Test-time adaptation provides an effective means of tackling the potential distribution shift
between model training and inference, by dynamically updating the model at test time. This …
between model training and inference, by dynamically updating the model at test time. This …
Test-time classifier adjustment module for model-agnostic domain generalization
This paper presents a new algorithm for domain generalization (DG),\textit {test-time
template adjuster (T3A)}, aiming to robustify a model to unknown distribution shift. Unlike …
template adjuster (T3A)}, aiming to robustify a model to unknown distribution shift. Unlike …
Ttt++: When does self-supervised test-time training fail or thrive?
Test-time training (TTT) through self-supervised learning (SSL) is an emerging paradigm to
tackle distributional shifts. Despite encouraging results, it remains unclear when this …
tackle distributional shifts. Despite encouraging results, it remains unclear when this …
Memo: Test time robustness via adaptation and augmentation
While deep neural networks can attain good accuracy on in-distribution test points, many
applications require robustness even in the face of unexpected perturbations in the input …
applications require robustness even in the face of unexpected perturbations in the input …
Tent: Fully test-time adaptation by entropy minimization
A model must adapt itself to generalize to new and different data during testing. In this
setting of fully test-time adaptation the model has only the test data and its own parameters …
setting of fully test-time adaptation the model has only the test data and its own parameters …
A fine-grained analysis on distribution shift
Robustness to distribution shifts is critical for deploying machine learning models in the real
world. Despite this necessity, there has been little work in defining the underlying …
world. Despite this necessity, there has been little work in defining the underlying …