Explainable AI (XAI): Core ideas, techniques, and solutions

R Dwivedi, D Dave, H Naik, S Singhal, R Omer… - ACM Computing …, 2023 - dl.acm.org
As our dependence on intelligent machines continues to grow, so does the demand for more
transparent and interpretable models. In addition, the ability to explain the model generally …

Trustworthy artificial intelligence: a review

D Kaur, S Uslu, KJ Rittichier, A Durresi - ACM computing surveys (CSUR …, 2022 - dl.acm.org
Artificial intelligence (AI) and algorithmic decision making are having a profound impact on
our daily lives. These systems are vastly used in different high-stakes applications like …

From artificial intelligence to explainable artificial intelligence in industry 4.0: a survey on what, how, and where

I Ahmed, G Jeon, F Piccialli - IEEE Transactions on Industrial …, 2022 - ieeexplore.ieee.org
Nowadays, Industry 4.0 can be considered a reality, a paradigm integrating modern
technologies and innovations. Artificial intelligence (AI) can be considered the leading …

A review of taxonomies of explainable artificial intelligence (XAI) methods

T Speith - Proceedings of the 2022 ACM conference on fairness …, 2022 - dl.acm.org
The recent surge in publications related to explainable artificial intelligence (XAI) has led to
an almost insurmountable wall if one wants to get started or stay up to date with XAI. For this …

From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai

M Nauta, J Trienes, S Pathak, E Nguyen… - ACM Computing …, 2023 - dl.acm.org
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …

[HTML][HTML] Explainable Artificial Intelligence (XAI) 2.0: A manifesto of open challenges and interdisciplinary research directions

L Longo, M Brcic, F Cabitza, J Choi, R Confalonieri… - Information …, 2024 - Elsevier
Understanding black box models has become paramount as systems based on opaque
Artificial Intelligence (AI) continue to flourish in diverse real-world applications. In response …

Evaluating the quality of machine learning explanations: A survey on methods and metrics

J Zhou, AH Gandomi, F Chen, A Holzinger - Electronics, 2021 - mdpi.com
The most successful Machine Learning (ML) systems remain complex black boxes to end-
users, and even experts are often unable to understand the rationale behind their decisions …

What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research

M Langer, D Oster, T Speith, H Hermanns, L Kästner… - Artificial Intelligence, 2021 - Elsevier
Abstract Previous research in Explainable Artificial Intelligence (XAI) suggests that a main
aim of explainability approaches is to satisfy specific interests, goals, expectations, needs …

Explainable artificial intelligence applications in cyber security: State-of-the-art in research

Z Zhang, H Al Hamadi, E Damiani, CY Yeun… - IEEE …, 2022 - ieeexplore.ieee.org
This survey presents a comprehensive review of current literature on Explainable Artificial
Intelligence (XAI) methods for cyber security applications. Due to the rapid development of …

Competitive advantage through artificial intelligence: Toward a theory of situated AI

A Kemp - Academy of Management Review, 2024 - journals.aom.org
How can firms establish competitive advantages using artificial intelligence (AI)? Although AI
is beginning to permeate business activities, our understanding of how AI can be used to …