Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Explainable AI (XAI): Core ideas, techniques, and solutions
As our dependence on intelligent machines continues to grow, so does the demand for more
transparent and interpretable models. In addition, the ability to explain the model generally …
transparent and interpretable models. In addition, the ability to explain the model generally …
A review of taxonomies of explainable artificial intelligence (XAI) methods
T Speith - Proceedings of the 2022 ACM conference on fairness …, 2022 - dl.acm.org
The recent surge in publications related to explainable artificial intelligence (XAI) has led to
an almost insurmountable wall if one wants to get started or stay up to date with XAI. For this …
an almost insurmountable wall if one wants to get started or stay up to date with XAI. For this …
From artificial intelligence to explainable artificial intelligence in industry 4.0: a survey on what, how, and where
Nowadays, Industry 4.0 can be considered a reality, a paradigm integrating modern
technologies and innovations. Artificial intelligence (AI) can be considered the leading …
technologies and innovations. Artificial intelligence (AI) can be considered the leading …
Trustworthy artificial intelligence: a review
Artificial intelligence (AI) and algorithmic decision making are having a profound impact on
our daily lives. These systems are vastly used in different high-stakes applications like …
our daily lives. These systems are vastly used in different high-stakes applications like …
Explainable artificial intelligence applications in cyber security: State-of-the-art in research
This survey presents a comprehensive review of current literature on Explainable Artificial
Intelligence (XAI) methods for cyber security applications. Due to the rapid development of …
Intelligence (XAI) methods for cyber security applications. Due to the rapid development of …
From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
Explainable machine learning in materials science
Abstract Machine learning models are increasingly used in materials studies because of
their exceptional accuracy. However, the most accurate machine learning models are …
their exceptional accuracy. However, the most accurate machine learning models are …
The metacognitive demands and opportunities of generative AI
Generative AI (GenAI) systems offer unprecedented opportunities for transforming
professional and personal work, yet present challenges around prompting, evaluating and …
professional and personal work, yet present challenges around prompting, evaluating and …
Evaluating the quality of machine learning explanations: A survey on methods and metrics
The most successful Machine Learning (ML) systems remain complex black boxes to end-
users, and even experts are often unable to understand the rationale behind their decisions …
users, and even experts are often unable to understand the rationale behind their decisions …
What do we want from Explainable Artificial Intelligence (XAI)?–A stakeholder perspective on XAI and a conceptual model guiding interdisciplinary XAI research
Abstract Previous research in Explainable Artificial Intelligence (XAI) suggests that a main
aim of explainability approaches is to satisfy specific interests, goals, expectations, needs …
aim of explainability approaches is to satisfy specific interests, goals, expectations, needs …