Reinforcement learning based recommender systems: A survey

MM Afsar, T Crump, B Far - ACM Computing Surveys, 2022 - dl.acm.org
Recommender systems (RSs) have become an inseparable part of our everyday lives. They
help us find our favorite items to purchase, our friends on social networks, and our favorite …

[HTML][HTML] Advances and challenges in conversational recommender systems: A survey

C Gao, W Lei, X He, M de Rijke, TS Chua - AI open, 2021 - Elsevier
Recommender systems exploit interaction history to estimate user preference, having been
heavily used in a wide range of industry applications. However, static recommendation …

Bias and debias in recommender system: A survey and future directions

J Chen, H Dong, X Wang, F Feng, M Wang… - ACM Transactions on …, 2023 - dl.acm.org
While recent years have witnessed a rapid growth of research papers on recommender
system (RS), most of the papers focus on inventing machine learning models to better fit …

Morel: Model-based offline reinforcement learning

R Kidambi, A Rajeswaran… - Advances in neural …, 2020 - proceedings.neurips.cc
In offline reinforcement learning (RL), the goal is to learn a highly rewarding policy based
solely on a dataset of historical interactions with the environment. This serves as an extreme …

[HTML][HTML] Deep reinforcement learning in recommender systems: A survey and new perspectives

X Chen, L Yao, J McAuley, G Zhou, X Wang - Knowledge-Based Systems, 2023 - Elsevier
In light of the emergence of deep reinforcement learning (DRL) in recommender systems
research and several fruitful results in recent years, this survey aims to provide a timely and …

Challenges of real-world reinforcement learning: definitions, benchmarks and analysis

G Dulac-Arnold, N Levine, DJ Mankowitz, J Li… - Machine Learning, 2021 - Springer
Reinforcement learning (RL) has proven its worth in a series of artificial domains, and is
beginning to show some successes in real-world scenarios. However, much of the research …

Approximate Bayesian inference with the weighted likelihood bootstrap

MA Newton, AE Raftery - Journal of the Royal Statistical Society …, 1994 - academic.oup.com
We introduce the weighted likelihood bootstrap (WLB) as a way to simulate approximately
from a posterior distribution. This method is often easy to implement, requiring only an …

Deep reinforcement learning: A survey

X Wang, S Wang, X Liang, D Zhao… - … on Neural Networks …, 2022 - ieeexplore.ieee.org
Deep reinforcement learning (DRL) integrates the feature representation ability of deep
learning with the decision-making ability of reinforcement learning so that it can achieve …

Towards long-term fairness in recommendation

Y Ge, S Liu, R Gao, Y **an, Y Li, X Zhao, C Pei… - Proceedings of the 14th …, 2021 - dl.acm.org
As Recommender Systems (RS) influence more and more people in their daily life, the issue
of fairness in recommendation is becoming more and more important. Most of the prior …

Fairness in recommendation ranking through pairwise comparisons

A Beutel, J Chen, T Doshi, H Qian, L Wei… - Proceedings of the 25th …, 2019 - dl.acm.org
Recommender systems are one of the most pervasive applications of machine learning in
industry, with many services using them to match users to products or information. As such it …