Graph neural network for traffic forecasting: A survey

W Jiang, J Luo - Expert systems with applications, 2022 - Elsevier
Traffic forecasting is important for the success of intelligent transportation systems. Deep
learning models, including convolution neural networks and recurrent neural networks, have …

Human action recognition from various data modalities: A review

Z Sun, Q Ke, H Rahmani, M Bennamoun… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Human Action Recognition (HAR) aims to understand human behavior and assign a label to
each action. It has a wide range of applications, and therefore has been attracting increasing …

Spatio-temporal graph neural networks for predictive learning in urban computing: A survey

G **, Y Liang, Y Fang, Z Shao, J Huang… - … on Knowledge and …, 2023 - ieeexplore.ieee.org
With recent advances in sensing technologies, a myriad of spatio-temporal data has been
generated and recorded in smart cities. Forecasting the evolution patterns of spatio-temporal …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Pre-training enhanced spatial-temporal graph neural network for multivariate time series forecasting

Z Shao, Z Zhang, F Wang, Y Xu - Proceedings of the 28th ACM SIGKDD …, 2022 - dl.acm.org
Multivariate Time Series (MTS) forecasting plays a vital role in a wide range of applications.
Recently, Spatial-Temporal Graph Neural Networks (STGNNs) have become increasingly …

Spatial-temporal graph ode networks for traffic flow forecasting

Z Fang, Q Long, G Song, K **e - Proceedings of the 27th ACM SIGKDD …, 2021 - dl.acm.org
Spatial-temporal forecasting has attracted tremendous attention in a wide range of
applications, and traffic flow prediction is a canonical and typical example. The complex and …

ROLAND: graph learning framework for dynamic graphs

J You, T Du, J Leskovec - Proceedings of the 28th ACM SIGKDD …, 2022 - dl.acm.org
Graph Neural Networks (GNNs) have been successfully applied to many real-world static
graphs. However, the success of static graphs has not fully translated to dynamic graphs due …

Urbangpt: Spatio-temporal large language models

Z Li, L **a, J Tang, Y Xu, L Shi, L **a, D Yin… - Proceedings of the 30th …, 2024 - dl.acm.org
Spatio-temporal prediction aims to forecast and gain insights into the ever-changing
dynamics of urban environments across both time and space. Its purpose is to anticipate …

Superhypergraph neural networks and plithogenic graph neural networks: Theoretical foundations

T Fujita - arxiv preprint arxiv:2412.01176, 2024 - arxiv.org
Hypergraphs extend traditional graphs by allowing edges to connect multiple nodes, while
superhypergraphs further generalize this concept to represent even more complex …

Traffic prediction using artificial intelligence: Review of recent advances and emerging opportunities

M Shaygan, C Meese, W Li, XG Zhao… - … research part C: emerging …, 2022 - Elsevier
Traffic prediction plays a crucial role in alleviating traffic congestion which represents a
critical problem globally, resulting in negative consequences such as lost hours of additional …