Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Tool learning with foundation models
Humans possess an extraordinary ability to create and utilize tools. With the advent of
foundation models, artificial intelligence systems have the potential to be equally adept in …
foundation models, artificial intelligence systems have the potential to be equally adept in …
Review the state-of-the-art technologies of semantic segmentation based on deep learning
The goal of semantic segmentation is to segment the input image according to semantic
information and predict the semantic category of each pixel from a given label set. With the …
information and predict the semantic category of each pixel from a given label set. With the …
Symphonize 3d semantic scene completion with contextual instance queries
Abstract 3D Semantic Scene Completion (SSC) has emerged as a nascent and pivotal
undertaking in autonomous driving aiming to predict the voxel occupancy within volumetric …
undertaking in autonomous driving aiming to predict the voxel occupancy within volumetric …
Clip is also an efficient segmenter: A text-driven approach for weakly supervised semantic segmentation
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging
task. Mainstream approaches follow a multi-stage framework and suffer from high training …
task. Mainstream approaches follow a multi-stage framework and suffer from high training …
Learning affinity from attention: End-to-end weakly-supervised semantic segmentation with transformers
Weakly-supervised semantic segmentation (WSSS) with image-level labels is an important
and challenging task. Due to the high training efficiency, end-to-end solutions for WSSS …
and challenging task. Due to the high training efficiency, end-to-end solutions for WSSS …
Layercam: Exploring hierarchical class activation maps for localization
The class activation maps are generated from the final convolutional layer of CNN. They can
highlight discriminative object regions for the class of interest. These discovered object …
highlight discriminative object regions for the class of interest. These discovered object …
A survey on deep semi-supervised learning
Deep semi-supervised learning is a fast-growing field with a range of practical applications.
This paper provides a comprehensive survey on both fundamentals and recent advances in …
This paper provides a comprehensive survey on both fundamentals and recent advances in …
L2g: A simple local-to-global knowledge transfer framework for weakly supervised semantic segmentation
Mining precise class-aware attention maps, aka, class activation maps, is essential for
weakly supervised semantic segmentation. In this paper, we present L2G, a simple online …
weakly supervised semantic segmentation. In this paper, we present L2G, a simple online …
Clims: Cross language image matching for weakly supervised semantic segmentation
It has been widely known that CAM (Class Activation Map) usually only activates
discriminative object regions and falsely includes lots of object-related backgrounds. As only …
discriminative object regions and falsely includes lots of object-related backgrounds. As only …
Semi-supervised semantic segmentation with cross-consistency training
In this paper, we present a novel cross-consistency based semi-supervised approach for
semantic segmentation. Consistency training has proven to be a powerful semi-supervised …
semantic segmentation. Consistency training has proven to be a powerful semi-supervised …