Quantum symmetric pairs

W Wang - Proc. Int. Cong. Math, 2022 - ems.press
This is a survey of some recent progress on quantum symmetric pairs and applications. The
topics include quasi-K-matrices,{Schur duality, canonical bases, super Kazhdan–Lusztig …

Quantum supersymmetric pairs and ıSchur duality of type AIII

Y Shen - Journal of Algebra, 2025 - Elsevier
We construct quantum supersymmetric pairs (U, U ı) of type AIII and elucidate their
fundamental properties. An ıSchur duality between the ıquantum supergroup U ı and the …

[HTML][HTML] Generalized Schur-Weyl dualities for quantum affine symmetric pairs and orientifold KLR algebras

A Appel, T Przeździecki - Advances in Mathematics, 2023 - Elsevier
Let g be a complex simple Lie algebra and U q L g the corresponding quantum affine
algebra. We construct a functor F θ between finite-dimensional modules over a quantum …

Quasi-parabolic Kazhdan-Lusztig bases and reflection subgroups

Z Carlini, Y Shen - Journal of Pure and Applied Algebra, 2024 - Elsevier
Recently, Wang and the second author constructed a bar involution and canonical basis for
a quasi-permutation module of the Hecke algebra associated to a type B Weyl group W …

Canonical bases of -Brauer algebras and Schur dualities

W Cui, Y Shen - arxiv preprint arxiv:2203.02082, 2022 - arxiv.org
Expanding the classical work of Kazhdan-Lusztig, we construct a bar involution and
canonical bases on the $ q $-Brauer algebra introduced by Wenzl. We define explicit actions …

Multiplication formulas and isomorphism theorem of ıSchur superalgebras

J Chen, L Luo - Journal of Pure and Applied Algebra, 2023 - Elsevier
We introduce the notion of ıSchur superalgebra, which can be regarded as a type B/C
counterpart of the q-Schur superalgebra (of type A) formulated as centralizer algebras of …