A novel deep quantile matrix completion model for top-N recommendation

M Yang, S Xu - Knowledge-Based Systems, 2021 - Elsevier
Matrix completion models have been receiving keen attention due to their wide applications
in science and engineering. However, the majority of these models assumes a symmetric …

Geometric matrix completion with deep conditional random fields

DM Nguyen, R Calderbank… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
The problem of completing high-dimensional matrices from a limited set of observations
arises in many big data applications, especially recommender systems. The existing matrix …

Deep learning approach for matrix completion using manifold learning

S Mehrdad, MH Kahaei - Signal Processing, 2021 - Elsevier
Matrix completion has received a vast amount of attention and research due to its wide
applications in various study fields. Existing methods of matrix completion consider only …

Matrix Completion via Nonsmooth Regularization of Fully Connected Neural Networks

S Faramarzi, F Haddadi, S Amini… - arxiv preprint arxiv …, 2024 - arxiv.org
Conventional matrix completion methods approximate the missing values by assuming the
matrix to be low-rank, which leads to a linear approximation of missing values. It has been …

Deep Nonlinear Hyperspectral Unmixing Using Multi-task Learning

S Mehrdad, SAH Janani - arxiv preprint arxiv:2402.03398, 2024 - arxiv.org
Nonlinear hyperspectral unmixing has recently received considerable attention, as linear
mixture models do not lead to an acceptable resolution in some problems. In fact, most …

Deep Matrix Factorization Based on Convolutional Neural Networks for Image Inpainting

X Ma, Z Li, H Wang - Entropy, 2022 - mdpi.com
In this work, we formulate the image in-painting as a matrix completion problem. Traditional
matrix completion methods are generally based on linear models, assuming that the matrix …

Методи та процесори розпізнавання багатомірних образів у Хеммінговому просторі

АІ Сидор - 2019 - dspace.wunu.edu.ua
Дисертацію присвячено розробці методів та процесорів розпізнавання багатомірних
образів у Хеммінговому просторі. Розроблений метод оцінки Хеммінгової віддалі на …

Learning Recommender Systems with Deep Structured Low Rank Matrix Approximation

M Niknafs Kermani - 2020 - repository.library.carleton.ca
In this study we propose a Deep structured LOw Rank Matrix Approximation model
(DLORMA) that incorporates additional stacked denoising autoencoders and local matrix …