Statistical physics of inference: Thresholds and algorithms

L Zdeborová, F Krzakala - Advances in Physics, 2016 - Taylor & Francis
Many questions of fundamental interest in today's science can be formulated as inference
problems: some partial, or noisy, observations are performed over a set of variables and the …

Disordered systems insights on computational hardness

D Gamarnik, C Moore… - Journal of Statistical …, 2022 - iopscience.iop.org
In this review article we discuss connections between the physics of disordered systems,
phase transitions in inference problems, and computational hardness. We introduce two …

Vector approximate message passing

S Rangan, P Schniter… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
The standard linear regression (SLR) problem is to recover a vector x 0 from noisy linear
observations y= Ax 0+ w. The approximate message passing (AMP) algorithm proposed by …

AMP-inspired deep networks for sparse linear inverse problems

M Borgerding, P Schniter… - IEEE Transactions on …, 2017 - ieeexplore.ieee.org
Deep learning has gained great popularity due to its widespread success on many inference
problems. We consider the application of deep learning to the sparse linear inverse …

Grant-free massive MTC-enabled massive MIMO: A compressive sensing approach

K Senel, EG Larsson - IEEE Transactions on Communications, 2018 - ieeexplore.ieee.org
A key challenge of massive MTC (mMTC), is the joint detection of device activity and
decoding of data. The sparse characteristics of mMTC makes compressed sensing (CS) …

Universality laws for high-dimensional learning with random features

H Hu, YM Lu - IEEE Transactions on Information Theory, 2022 - ieeexplore.ieee.org
We prove a universality theorem for learning with random features. Our result shows that, in
terms of training and generalization errors, a random feature model with a nonlinear …

Orthogonal amp

J Ma, L ** - IEEE Access, 2017 - ieeexplore.ieee.org
Approximate message passing (AMP) is a low-cost iterative signal recovery algorithm for
linear system models. When the system transform matrix has independent identically …

A unifying tutorial on approximate message passing

OY Feng, R Venkataramanan, C Rush… - … and Trends® in …, 2022 - nowpublishers.com
Over the last decade or so, Approximate Message Passing (AMP) algorithms have become
extremely popular in various structured high-dimensional statistical problems. Although the …

Gradient descent with random initialization: Fast global convergence for nonconvex phase retrieval

Y Chen, Y Chi, J Fan, C Ma - Mathematical Programming, 2019 - Springer
This paper considers the problem of solving systems of quadratic equations, namely,
recovering an object of interest x^ ♮ ∈ R^ nx♮∈ R n from m quadratic equations/samples …

Optimal errors and phase transitions in high-dimensional generalized linear models

J Barbier, F Krzakala, N Macris… - Proceedings of the …, 2019 - National Acad Sciences
Generalized linear models (GLMs) are used in high-dimensional machine learning,
statistics, communications, and signal processing. In this paper we analyze GLMs when the …