Attention mechanisms in computer vision: A survey

MH Guo, TX Xu, JJ Liu, ZN Liu, PT Jiang, TJ Mu… - Computational visual …, 2022 - Springer
Humans can naturally and effectively find salient regions in complex scenes. Motivated by
this observation, attention mechanisms were introduced into computer vision with the aim of …

Transformers in vision: A survey

S Khan, M Naseer, M Hayat, SW Zamir… - ACM computing …, 2022 - dl.acm.org
Astounding results from Transformer models on natural language tasks have intrigued the
vision community to study their application to computer vision problems. Among their salient …

Restormer: Efficient transformer for high-resolution image restoration

SW Zamir, A Arora, S Khan, M Hayat… - Proceedings of the …, 2022 - openaccess.thecvf.com
Since convolutional neural networks (CNNs) perform well at learning generalizable image
priors from large-scale data, these models have been extensively applied to image …

Swinir: Image restoration using swin transformer

J Liang, J Cao, G Sun, K Zhang… - Proceedings of the …, 2021 - openaccess.thecvf.com
Image restoration is a long-standing low-level vision problem that aims to restore high-
quality images from low-quality images (eg, downscaled, noisy and compressed images) …

Activating more pixels in image super-resolution transformer

X Chen, X Wang, J Zhou, Y Qiao… - Proceedings of the …, 2023 - openaccess.thecvf.com
Transformer-based methods have shown impressive performance in low-level vision tasks,
such as image super-resolution. However, we find that these networks can only utilize a …

Real-esrgan: Training real-world blind super-resolution with pure synthetic data

X Wang, L **e, C Dong, Y Shan - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Though many attempts have been made in blind super-resolution to restore low-resolution
images with unknown and complex degradations, they are still far from addressing general …

Uformer: A general u-shaped transformer for image restoration

Z Wang, X Cun, J Bao, W Zhou… - Proceedings of the …, 2022 - openaccess.thecvf.com
In this paper, we present Uformer, an effective and efficient Transformer-based architecture
for image restoration, in which we build a hierarchical encoder-decoder network using the …

Image super-resolution via iterative refinement

C Saharia, J Ho, W Chan, T Salimans… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3
adapts denoising diffusion probabilistic models (Ho et al. 2020),(Sohl-Dickstein et al. 2015) …

Multi-stage progressive image restoration

SW Zamir, A Arora, S Khan, M Hayat… - Proceedings of the …, 2021 - openaccess.thecvf.com
Image restoration tasks demand a complex balance between spatial details and high-level
contextualized information while recovering images. In this paper, we propose a novel …

Pre-trained image processing transformer

H Chen, Y Wang, T Guo, C Xu… - Proceedings of the …, 2021 - openaccess.thecvf.com
As the computing power of modern hardware is increasing strongly, pre-trained deep
learning models (eg, BERT, GPT-3) learned on large-scale datasets have shown their …