Smart farming using artificial intelligence: A review

Y Akkem, SK Biswas, A Varanasi - Engineering Applications of Artificial …, 2023 - Elsevier
Smart farming with artificial intelligence provides an efficient solution to today's agricultural
sustainability challenges. Machine learning, Deep learning, and time series analysis are …

Foundation models for time series analysis: A tutorial and survey

Y Liang, H Wen, Y Nie, Y Jiang, M **, D Song… - Proceedings of the 30th …, 2024 - dl.acm.org
Time series analysis stands as a focal point within the data mining community, serving as a
cornerstone for extracting valuable insights crucial to a myriad of real-world applications …

[HTML][HTML] Recurrent neural networks: A comprehensive review of architectures, variants, and applications

ID Mienye, TG Swart, G Obaido - Information, 2024 - mdpi.com
Recurrent neural networks (RNNs) have significantly advanced the field of machine learning
(ML) by enabling the effective processing of sequential data. This paper provides a …

Federated learning for internet of things: Recent advances, taxonomy, and open challenges

LU Khan, W Saad, Z Han, E Hossain… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) will be ripe for the deployment of novel machine learning
algorithm for both network and application management. However, given the presence of …

Long sequence time-series forecasting with deep learning: A survey

Z Chen, M Ma, T Li, H Wang, C Li - Information Fusion, 2023 - Elsevier
The development of deep learning technology has brought great improvements to the field
of time series forecasting. Short sequence time-series forecasting no longer satisfies the …

An experimental review on deep learning architectures for time series forecasting

P Lara-Benítez, M Carranza-García… - International journal of …, 2021 - World Scientific
In recent years, deep learning techniques have outperformed traditional models in many
machine learning tasks. Deep neural networks have successfully been applied to address …

A survey on deep learning-based change detection from high-resolution remote sensing images

H Jiang, M Peng, Y Zhong, H **e, Z Hao, J Lin, X Ma… - Remote Sensing, 2022 - mdpi.com
Change detection based on remote sensing images plays an important role in the field of
remote sensing analysis, and it has been widely used in many areas, such as resources …

Review of deep learning: concepts, CNN architectures, challenges, applications, future directions

L Alzubaidi, J Zhang, AJ Humaidi, A Al-Dujaili… - Journal of big Data, 2021 - Springer
In the last few years, the deep learning (DL) computing paradigm has been deemed the
Gold Standard in the machine learning (ML) community. Moreover, it has gradually become …

[HTML][HTML] Forecasting: theory and practice

F Petropoulos, D Apiletti, V Assimakopoulos… - International Journal of …, 2022 - Elsevier
Forecasting has always been at the forefront of decision making and planning. The
uncertainty that surrounds the future is both exciting and challenging, with individuals and …

Forecasting renewable energy generation with machine learning and deep learning: Current advances and future prospects

NE Benti, MD Chaka, AG Semie - Sustainability, 2023 - mdpi.com
This article presents a review of current advances and prospects in the field of forecasting
renewable energy generation using machine learning (ML) and deep learning (DL) …