Predictive models for concrete properties using machine learning and deep learning approaches: A review

MM Moein, A Saradar, K Rahmati… - Journal of Building …, 2023 - Elsevier
Concrete is one of the most widely used materials in various civil engineering applications.
Its global production rate is increasing to meet demand. Mechanical properties of concrete …

Error metrics and performance fitness indicators for artificial intelligence and machine learning in engineering and sciences

MZ Naser, AH Alavi - Architecture, Structures and Construction, 2023 - Springer
Artificial intelligence (AI) and Machine learning (ML) train machines to achieve a high level
of cognition and perform human-like analysis. Both AI and ML seemingly fit into our daily …

[HTML][HTML] A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations …

IU Ekanayake, DPP Meddage, U Rathnayake - Case Studies in …, 2022 - Elsevier
Abstract Machine learning (ML) techniques are often employed for the accurate prediction of
the compressive strength of concrete. Despite higher accuracy, previous ML models failed to …

Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models

PG Asteris, AD Skentou, A Bardhan, P Samui… - Cement and Concrete …, 2021 - Elsevier
This study aims to implement a hybrid ensemble surrogate machine learning technique in
predicting the compressive strength (CS) of concrete, an important parameter used for …

Machine learning models for predicting compressive strength of fiber-reinforced concrete containing waste rubber and recycled aggregate

A Pal, KS Ahmed, FMZ Hossain, MS Alam - Journal of Cleaner Production, 2023 - Elsevier
The compressive strength of fiber-reinforced rubberized recycled aggregate concrete (FR 3
C) is an important performance indicator for its practical application and durability in the …

Machine learning prediction of mechanical properties of concrete: Critical review

WB Chaabene, M Flah, ML Nehdi - Construction and Building Materials, 2020 - Elsevier
Accurate prediction of the mechanical properties of concrete has been a concern since
these properties are often required by design codes. The emergence of new concrete …

Efficient machine learning models for prediction of concrete strengths

H Nguyen, T Vu, TP Vo, HT Thai - Construction and Building Materials, 2021 - Elsevier
In this study, an efficient implementation of machine learning models to predict compressive
and tensile strengths of high-performance concrete (HPC) is presented. Four predictive …

Machine learning-based compressive strength prediction for concrete: An adaptive boosting approach

DC Feng, ZT Liu, XD Wang, Y Chen, JQ Chang… - … and Building Materials, 2020 - Elsevier
In this paper, an intelligent approach based on the machine learning technique is proposed
for predicting the compressive strength of concrete. This approach employs the adaptive …

State-of-the-art review on advancements of data mining in structural health monitoring

M Gordan, SR Sabbagh-Yazdi, Z Ismail, K Ghaedi… - Measurement, 2022 - Elsevier
To date, data mining (DM) techniques, ie artificial intelligence, machine learning, and
statistical methods have been utilized in a remarkable number of structural health monitoring …

A generalized method to predict the compressive strength of high-performance concrete by improved random forest algorithm

Q Han, C Gui, J Xu, G Lacidogna - Construction and Building Materials, 2019 - Elsevier
The prediction results of high-performance concrete compressive strength (HPCCS) based
on machine learning methods are seriously influenced by input variables and model …