Generalized out-of-distribution detection: A survey

J Yang, K Zhou, Y Li, Z Liu - International Journal of Computer Vision, 2024 - Springer
Abstract Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of
machine learning systems. For instance, in autonomous driving, we would like the driving …

Out-of-distribution detection with deep nearest neighbors

Y Sun, Y Ming, X Zhu, Y Li - International Conference on …, 2022 - proceedings.mlr.press
Abstract Out-of-distribution (OOD) detection is a critical task for deploying machine learning
models in the open world. Distance-based methods have demonstrated promise, where …

Openood: Benchmarking generalized out-of-distribution detection

J Yang, P Wang, D Zou, Z Zhou… - Advances in …, 2022 - proceedings.neurips.cc
Abstract Out-of-distribution (OOD) detection is vital to safety-critical machine learning
applications and has thus been extensively studied, with a plethora of methods developed in …

Dice: Leveraging sparsification for out-of-distribution detection

Y Sun, Y Li - European Conference on Computer Vision, 2022 - Springer
Detecting out-of-distribution (OOD) inputs is a central challenge for safely deploying
machine learning models in the real world. Previous methods commonly rely on an OOD …

Slca: Slow learner with classifier alignment for continual learning on a pre-trained model

G Zhang, L Wang, G Kang… - Proceedings of the …, 2023 - openaccess.thecvf.com
The goal of continual learning is to improve the performance of recognition models in
learning sequentially arrived data. Although most existing works are established on the …

Poem: Out-of-distribution detection with posterior sampling

Y Ming, Y Fan, Y Li - International Conference on Machine …, 2022 - proceedings.mlr.press
Abstract Out-of-distribution (OOD) detection is indispensable for machine learning models
deployed in the open world. Recently, the use of an auxiliary outlier dataset during training …

Dream the impossible: Outlier imagination with diffusion models

X Du, Y Sun, J Zhu, Y Li - Advances in Neural Information …, 2024 - proceedings.neurips.cc
Utilizing auxiliary outlier datasets to regularize the machine learning model has
demonstrated promise for out-of-distribution (OOD) detection and safe prediction. Due to the …

Open-world machine learning: A review and new outlooks

F Zhu, S Ma, Z Cheng, XY Zhang, Z Zhang… - arxiv preprint arxiv …, 2024 - arxiv.org
Machine learning has achieved remarkable success in many applications. However,
existing studies are largely based on the closed-world assumption, which assumes that the …

Learning to augment distributions for out-of-distribution detection

Q Wang, Z Fang, Y Zhang, F Liu… - Advances in neural …, 2023 - proceedings.neurips.cc
Open-world classification systems should discern out-of-distribution (OOD) data whose
labels deviate from those of in-distribution (ID) cases, motivating recent studies in OOD …

Openood v1. 5: Enhanced benchmark for out-of-distribution detection

J Zhang, J Yang, P Wang, H Wang, Y Lin… - arxiv preprint arxiv …, 2023 - arxiv.org
Out-of-Distribution (OOD) detection is critical for the reliable operation of open-world
intelligent systems. Despite the emergence of an increasing number of OOD detection …