Artificial intelligence for remote sensing data analysis: A review of challenges and opportunities
Artificial intelligence (AI) plays a growing role in remote sensing (RS). Applications of AI,
particularly machine learning algorithms, range from initial image processing to high-level …
particularly machine learning algorithms, range from initial image processing to high-level …
A survey and performance evaluation of deep learning methods for small object detection
In computer vision, significant advances have been made on object detection with the rapid
development of deep convolutional neural networks (CNN). This paper provides a …
development of deep convolutional neural networks (CNN). This paper provides a …
Towards large-scale small object detection: Survey and benchmarks
With the rise of deep convolutional neural networks, object detection has achieved
prominent advances in past years. However, such prosperity could not camouflage the …
prominent advances in past years. However, such prosperity could not camouflage the …
WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection
Objective. With climatic instability, various ecological disturbances, and human actions
threaten the existence of various endangered wildlife species. Therefore, an up-to-date …
threaten the existence of various endangered wildlife species. Therefore, an up-to-date …
RSPrompter: Learning to prompt for remote sensing instance segmentation based on visual foundation model
Leveraging the extensive training data from SA-1B, the segment anything model (SAM)
demonstrates remarkable generalization and zero-shot capabilities. However, as a category …
demonstrates remarkable generalization and zero-shot capabilities. However, as a category …
RingMo: A remote sensing foundation model with masked image modeling
Deep learning approaches have contributed to the rapid development of remote sensing
(RS) image interpretation. The most widely used training paradigm is to use ImageNet …
(RS) image interpretation. The most widely used training paradigm is to use ImageNet …
[HTML][HTML] A review on deep learning in UAV remote sensing
Abstract Deep Neural Networks (DNNs) learn representation from data with an impressive
capability, and brought important breakthroughs for processing images, time-series, natural …
capability, and brought important breakthroughs for processing images, time-series, natural …
FAIR1M: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery
With the rapid development of deep learning, many deep learning-based approaches have
made great achievements in object detection tasks. It is generally known that deep learning …
made great achievements in object detection tasks. It is generally known that deep learning …
Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities
Remote sensing image scene classification, which aims at labeling remote sensing images
with a set of semantic categories based on their contents, has broad applications in a range …
with a set of semantic categories based on their contents, has broad applications in a range …
Object detection in optical remote sensing images: A survey and a new benchmark
Substantial efforts have been devoted more recently to presenting various methods for
object detection in optical remote sensing images. However, the current survey of datasets …
object detection in optical remote sensing images. However, the current survey of datasets …