From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
[HTML][HTML] Notions of explainability and evaluation approaches for explainable artificial intelligence
Abstract Explainable Artificial Intelligence (XAI) has experienced a significant growth over
the last few years. This is due to the widespread application of machine learning, particularly …
the last few years. This is due to the widespread application of machine learning, particularly …
[HTML][HTML] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
Artificial intelligence (AI) is currently being utilized in a wide range of sophisticated
applications, but the outcomes of many AI models are challenging to comprehend and trust …
applications, but the outcomes of many AI models are challenging to comprehend and trust …
[HTML][HTML] Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities
The past decade has seen significant progress in artificial intelligence (AI), which has
resulted in algorithms being adopted for resolving a variety of problems. However, this …
resulted in algorithms being adopted for resolving a variety of problems. However, this …
A survey of algorithmic recourse: contrastive explanations and consequential recommendations
Machine learning is increasingly used to inform decision making in sensitive situations
where decisions have consequential effects on individuals' lives. In these settings, in …
where decisions have consequential effects on individuals' lives. In these settings, in …
[HTML][HTML] Information fusion as an integrative cross-cutting enabler to achieve robust, explainable, and trustworthy medical artificial intelligence
Medical artificial intelligence (AI) systems have been remarkably successful, even
outperforming human performance at certain tasks. There is no doubt that AI is important to …
outperforming human performance at certain tasks. There is no doubt that AI is important to …
Time-series forecasting with deep learning: a survey
Numerous deep learning architectures have been developed to accommodate the diversity
of time-series datasets across different domains. In this article, we survey common encoder …
of time-series datasets across different domains. In this article, we survey common encoder …
Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond
Deep neural networks have been well-known for their superb handling of various machine
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …
learning and artificial intelligence tasks. However, due to their over-parameterized black-box …
Methods and tools for causal discovery and causal inference
Causality is a complex concept, which roots its developments across several fields, such as
statistics, economics, epidemiology, computer science, and philosophy. In recent years, the …
statistics, economics, epidemiology, computer science, and philosophy. In recent years, the …
" Help Me Help the AI": Understanding How Explainability Can Support Human-AI Interaction
Despite the proliferation of explainable AI (XAI) methods, little is understood about end-
users' explainability needs and behaviors around XAI explanations. To address this gap and …
users' explainability needs and behaviors around XAI explanations. To address this gap and …