[HTML][HTML] Applications of machine vision in pharmaceutical technology: A review

DL Galata, LA Meszaros, N Kallai-Szabo… - European Journal of …, 2021‏ - Elsevier
The goal of this paper is to give an introduction to analysis of images acquired by a digital
camera with visible illumination and to review its applications as a Process Analytical …

Learning nonlocal sparse and low-rank models for image compressive sensing: Nonlocal sparse and low-rank modeling

Z Zha, B Wen, X Yuan, S Ravishankar… - IEEE Signal …, 2023‏ - ieeexplore.ieee.org
The compressive sensing (CS) scheme exploits many fewer measurements than suggested
by the Nyquist–Shannon sampling theorem to accurately reconstruct images, which has …

Deep generalized unfolding networks for image restoration

C Mou, Q Wang, J Zhang - … of the IEEE/CVF conference on …, 2022‏ - openaccess.thecvf.com
Deep neural networks (DNN) have achieved great success in image restoration. However,
most DNN methods are designed as a black box, lacking transparency and interpretability …

ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing

J Zhang, B Ghanem - … of the IEEE conference on computer …, 2018‏ - openaccess.thecvf.com
With the aim of develo** a fast yet accurate algorithm for compressive sensing (CS)
reconstruction of natural images, we combine in this paper the merits of two existing …

Depth image denoising using nuclear norm and learning graph model

C Yan, Z Li, Y Zhang, Y Liu, X Ji, Y Zhang - ACM Transactions on …, 2020‏ - dl.acm.org
Depth image denoising is increasingly becoming the hot research topic nowadays, because
it reflects the three-dimensional scene and can be applied in various fields of computer …

Rank minimization for snapshot compressive imaging

Y Liu, X Yuan, J Suo, DJ Brady… - IEEE transactions on …, 2018‏ - ieeexplore.ieee.org
Snapshot compressive imaging (SCI) refers to compressive imaging systems where multiple
frames are mapped into a single measurement, with video compressive imaging and …

Plug-and-play ADMM for image restoration: Fixed-point convergence and applications

SH Chan, X Wang, OA Elgendy - IEEE Transactions on …, 2016‏ - ieeexplore.ieee.org
Alternating direction method of multiplier (ADMM) is a widely used algorithm for solving
constrained optimization problems in image restoration. Among many useful features, one …

Image compressed sensing using convolutional neural network

W Shi, F Jiang, S Liu, D Zhao - IEEE Transactions on Image …, 2019‏ - ieeexplore.ieee.org
In the study of compressed sensing (CS), the two main challenges are the design of
sampling matrix and the development of reconstruction method. On the one hand, the …

Dynamic attentive graph learning for image restoration

C Mou, J Zhang, Z Wu - Proceedings of the IEEE/CVF …, 2021‏ - openaccess.thecvf.com
Non-local self-similarity in natural images has been verified to be an effective prior for image
restoration. However, most existing deep non-local methods assign a fixed number of …

A survey of sparse representation: algorithms and applications

Z Zhang, Y Xu, J Yang, X Li, D Zhang - IEEE access, 2015‏ - ieeexplore.ieee.org
Sparse representation has attracted much attention from researchers in fields of signal
processing, image processing, computer vision, and pattern recognition. Sparse …