Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis

D Karimi, H Dou, SK Warfield, A Gholipour - Medical image analysis, 2020 - Elsevier
Supervised training of deep learning models requires large labeled datasets. There is a
growing interest in obtaining such datasets for medical image analysis applications …

Towards robust pattern recognition: A review

XY Zhang, CL Liu, CY Suen - Proceedings of the IEEE, 2020 - ieeexplore.ieee.org
The accuracies for many pattern recognition tasks have increased rapidly year by year,
achieving or even outperforming human performance. From the perspective of accuracy …

Selective-supervised contrastive learning with noisy labels

S Li, X ** for learning with noisy labels
Y Bai, E Yang, B Han, Y Yang, J Li… - Advances in …, 2021 - proceedings.neurips.cc
The memorization effect of deep neural network (DNN) plays a pivotal role in many state-of-
the-art label-noise learning methods. To exploit this property, the early stop** trick, which …

Normalized loss functions for deep learning with noisy labels

X Ma, H Huang, Y Wang, S Romano… - International …, 2020 - proceedings.mlr.press
Robust loss functions are essential for training accurate deep neural networks (DNNs) in the
presence of noisy (incorrect) labels. It has been shown that the commonly used Cross …

Combating noisy labels by agreement: A joint training method with co-regularization

H Wei, L Feng, X Chen, B An - Proceedings of the IEEE/CVF …, 2020 - openaccess.thecvf.com
Deep Learning with noisy labels is a practically challenging problem in weakly-supervised
learning. The state-of-the-art approaches" Decoupling" and" Co-teaching+" claim that the" …