A survey on curriculum learning

X Wang, Y Chen, W Zhu - IEEE transactions on pattern analysis …, 2021 - ieeexplore.ieee.org
Curriculum learning (CL) is a training strategy that trains a machine learning model from
easier data to harder data, which imitates the meaningful learning order in human curricula …

Learning from noisy labels with deep neural networks: A survey

H Song, M Kim, D Park, Y Shin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Deep learning has achieved remarkable success in numerous domains with help from large
amounts of big data. However, the quality of data labels is a concern because of the lack of …

Regionclip: Region-based language-image pretraining

Y Zhong, J Yang, P Zhang, C Li… - Proceedings of the …, 2022 - openaccess.thecvf.com
Contrastive language-image pretraining (CLIP) using image-text pairs has achieved
impressive results on image classification in both zero-shot and transfer learning settings …

Generalized out-of-distribution detection: A survey

J Yang, K Zhou, Y Li, Z Liu - International Journal of Computer Vision, 2024 - Springer
Abstract Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of
machine learning systems. For instance, in autonomous driving, we would like the driving …

Region-aware pretraining for open-vocabulary object detection with vision transformers

D Kim, A Angelova, W Kuo - … of the IEEE/CVF conference on …, 2023 - openaccess.thecvf.com
Abstract We present Region-aware Open-vocabulary Vision Transformers (RO-ViT)--a
contrastive image-text pretraining recipe to bridge the gap between image-level pretraining …

Learning transferable visual models from natural language supervision

A Radford, JW Kim, C Hallacy… - International …, 2021 - proceedings.mlr.press
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined
object categories. This restricted form of supervision limits their generality and usability since …

Weakly supervised object localization and detection: A survey

D Zhang, J Han, G Cheng… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
As an emerging and challenging problem in the computer vision community, weakly
supervised object localization and detection plays an important role for develo** new …

Curriculum learning: A survey

P Soviany, RT Ionescu, P Rota, N Sebe - International Journal of …, 2022 - Springer
Training machine learning models in a meaningful order, from the easy samples to the hard
ones, using curriculum learning can provide performance improvements over the standard …

Boundary-enhanced co-training for weakly supervised semantic segmentation

S Rong, B Tu, Z Wang, J Li - … of the IEEE/CVF conference on …, 2023 - openaccess.thecvf.com
The existing weakly supervised semantic segmentation (WSSS) methods pay much
attention to generating accurate and complete class activation maps (CAMs) as pseudo …

AutoML: A survey of the state-of-the-art

X He, K Zhao, X Chu - Knowledge-based systems, 2021 - Elsevier
Deep learning (DL) techniques have obtained remarkable achievements on various tasks,
such as image recognition, object detection, and language modeling. However, building a …