Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Tool learning with foundation models
Humans possess an extraordinary ability to create and utilize tools. With the advent of
foundation models, artificial intelligence systems have the potential to be equally adept in …
foundation models, artificial intelligence systems have the potential to be equally adept in …
Review the state-of-the-art technologies of semantic segmentation based on deep learning
The goal of semantic segmentation is to segment the input image according to semantic
information and predict the semantic category of each pixel from a given label set. With the …
information and predict the semantic category of each pixel from a given label set. With the …
Token contrast for weakly-supervised semantic segmentation
Abstract Weakly-Supervised Semantic Segmentation (WSSS) using image-level labels
typically utilizes Class Activation Map (CAM) to generate the pseudo labels. Limited by the …
typically utilizes Class Activation Map (CAM) to generate the pseudo labels. Limited by the …
Groupvit: Semantic segmentation emerges from text supervision
Grou** and recognition are important components of visual scene understanding, eg, for
object detection and semantic segmentation. With end-to-end deep learning systems …
object detection and semantic segmentation. With end-to-end deep learning systems …
Clip is also an efficient segmenter: A text-driven approach for weakly supervised semantic segmentation
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging
task. Mainstream approaches follow a multi-stage framework and suffer from high training …
task. Mainstream approaches follow a multi-stage framework and suffer from high training …
Multi-class token transformer for weakly supervised semantic segmentation
This paper proposes a new transformer-based framework to learn class-specific object
localization maps as pseudo labels for weakly supervised semantic segmentation (WSSS) …
localization maps as pseudo labels for weakly supervised semantic segmentation (WSSS) …
Learning affinity from attention: End-to-end weakly-supervised semantic segmentation with transformers
Weakly-supervised semantic segmentation (WSSS) with image-level labels is an important
and challenging task. Due to the high training efficiency, end-to-end solutions for WSSS …
and challenging task. Due to the high training efficiency, end-to-end solutions for WSSS …
Hypercorrelation squeeze for few-shot segmentation
Few-shot semantic segmentation aims at learning to segment a target object from a query
image using only a few annotated support images of the target class. This challenging task …
image using only a few annotated support images of the target class. This challenging task …
Regional semantic contrast and aggregation for weakly supervised semantic segmentation
Learning semantic segmentation from weakly-labeled (eg, image tags only) data is
challenging since it is hard to infer dense object regions from sparse semantic tags. Despite …
challenging since it is hard to infer dense object regions from sparse semantic tags. Despite …
Self-supervised image-specific prototype exploration for weakly supervised semantic segmentation
Abstract Weakly Supervised Semantic Segmentation (WSSS) based on image-level labels
has attracted much attention due to low annotation costs. Existing methods often rely on …
has attracted much attention due to low annotation costs. Existing methods often rely on …