Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of
various energy conversion and storage systems. However, their sluggish reaction kinetics …
various energy conversion and storage systems. However, their sluggish reaction kinetics …
Sustainable zinc–air battery chemistry: advances, challenges and prospects
Q Wang, S Kaushik, X **ao, Q Xu - Chemical Society Reviews, 2023 - pubs.rsc.org
Sustainable zinc–air batteries (ZABs) are considered promising energy storage devices
owing to their inherent safety, high energy density, wide operating temperature window …
owing to their inherent safety, high energy density, wide operating temperature window …
Understanding the structure-performance relationship of active sites at atomic scale
R Li, D Wang - Nano Research, 2022 - Springer
Metal-based atomically dispersed catalysts have attracted more attention because of their
excellent catalytic performance and nearly 100% atom utilization. Therefore, it is very …
excellent catalytic performance and nearly 100% atom utilization. Therefore, it is very …
Rational design of flexible Zn-based batteries for wearable electronic devices
The advent of 5G and the Internet of Things has spawned a demand for wearable electronic
devices. However, the lack of a suitable flexible energy storage system has become the …
devices. However, the lack of a suitable flexible energy storage system has become the …
Carbon-based electrocatalysts for rechargeable Zn–air batteries: design concepts, recent progress and future perspectives
With increasing interest in energy storage solutions, rapid progress has been made by
researchers in the area of rechargeable Zn–air batteries (R-ZABs), which offer multiple …
researchers in the area of rechargeable Zn–air batteries (R-ZABs), which offer multiple …
Progress and perspectives for solar‐driven water electrolysis to produce green hydrogen
H Zhao, ZY Yuan - Advanced Energy Materials, 2023 - Wiley Online Library
Solar‐driven water electrolysis has been considered to be a promising route to produce
green hydrogen, because the conventional water electrolysis system is not completely …
green hydrogen, because the conventional water electrolysis system is not completely …
N, O symmetric double coordination of an unsaturated Fe single-atom confined within a graphene framework for extraordinarily boosting oxygen reduction in Zn–air …
The Fe–N coordinated single atom catalysts (SACs) are regarded as one of the most
prominent substitutes for the commercial Pt/C electrocatalyst in the oxygen reduction …
prominent substitutes for the commercial Pt/C electrocatalyst in the oxygen reduction …
Advanced design strategies for Fe-based metal–organic framework-derived electrocatalysts toward high-performance Zn–air batteries
YF Guo, S Zhao, N Zhang, ZL Liu, PF Wang… - Energy & …, 2024 - pubs.rsc.org
Zinc–air batteries (ZABs) are considered as one of the most promising energy systems due
to their environmentally friendly and high energy density characteristics. Nevertheless, the …
to their environmentally friendly and high energy density characteristics. Nevertheless, the …
Bifunctional single atom catalysts for rechargeable zinc–air batteries: from dynamic mechanism to rational design
Ever‐growing demands for rechargeable zinc–air batteries (ZABs) call for efficient
bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) …
bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) …
Atomic distance engineering in metal catalysts to regulate catalytic performance
R Li, J Zhao, B Liu, D Wang - Advanced Materials, 2024 - Wiley Online Library
It is very important to understand the structure–performance relationship of metal catalysts
by adjusting the microstructure of catalysts at the atomic scale. The atomic distance has an …
by adjusting the microstructure of catalysts at the atomic scale. The atomic distance has an …