DelayNet: Enhancing Temporal Feature Extraction for Electronic Consumption Forecasting with Delayed Dilated Convolution

LH Anh, GH Yu, DT Vu, HG Kim, JY Kim - Energies, 2023 - mdpi.com
In the face of increasing irregular temperature patterns and climate shifts, the need for
accurate power consumption prediction is becoming increasingly important to ensure a …

Partial Transfer Learning from Patch Transformer to Variate-Based Linear Forecasting Model.

LH Anh, DT Vu, S Oh, GH Yu, NBN Han… - Energies …, 2024 - search.ebscohost.com
Transformer-based time series forecasting models use patch tokens for temporal patterns
and variate tokens to learn covariates' dependencies. While patch tokens inherently facilitate …

ChronoPatternNet: Revolutionizing Electricity Consumption Forecasting with Advanced Temporal Pattern Recognition and Efficient Computational Design

SC Lee, GH Yu, JY Kim - 디지털콘텐츠학회논문지, 2024 - dbpia.co.kr
ChronoPatternNet revolutionizes power forecasting using a unique 2D convolutional
approach for advanced temporal pattern recognition. The'chronocycle'hyperparameter …

Electricity consumption forecasting with Transformer models

A Gravrok - 2023 - ntnuopen.ntnu.no
Denne studien presenterer en omfattende evaluering av forskjellige maskinlærings-og dyp
læringsmodeller, med et spesielt fokus på Transformer-modeller, for korttidsprognoser for …