Learning a sparse transformer network for effective image deraining
Transformers-based methods have achieved significant performance in image deraining as
they can model the non-local information which is vital for high-quality image reconstruction …
they can model the non-local information which is vital for high-quality image reconstruction …
Vision transformers for single image dehazing
Image dehazing is a representative low-level vision task that estimates latent haze-free
images from hazy images. In recent years, convolutional neural network-based methods …
images from hazy images. In recent years, convolutional neural network-based methods …
Curricular contrastive regularization for physics-aware single image dehazing
Considering the ill-posed nature, contrastive regularization has been developed for single
image dehazing, introducing the information from negative images as a lower bound …
image dehazing, introducing the information from negative images as a lower bound …
Srformer: Permuted self-attention for single image super-resolution
Previous works have shown that increasing the window size for Transformer-based image
super-resolution models (eg, SwinIR) can significantly improve the model performance but …
super-resolution models (eg, SwinIR) can significantly improve the model performance but …
Fourmer: An efficient global modeling paradigm for image restoration
Global modeling-based image restoration frameworks have become popular. However, they
often require a high memory footprint and do not consider task-specific degradation. Our …
often require a high memory footprint and do not consider task-specific degradation. Our …
Ridcp: Revitalizing real image dehazing via high-quality codebook priors
Existing dehazing approaches struggle to process real-world hazy images owing to the lack
of paired real data and robust priors. In this work, we present a new paradigm for real image …
of paired real data and robust priors. In this work, we present a new paradigm for real image …
Mb-taylorformer: Multi-branch efficient transformer expanded by taylor formula for image dehazing
In recent years, Transformer networks are beginning to replace pure convolutional neural
networks (CNNs) in the field of computer vision due to their global receptive field and …
networks (CNNs) in the field of computer vision due to their global receptive field and …
Focal network for image restoration
Image restoration aims to reconstruct a sharp image from its degraded counterpart, which
plays an important role in many fields. Recently, Transformer models have achieved …
plays an important role in many fields. Recently, Transformer models have achieved …
Underwater image enhancement via piecewise color correction and dual prior optimized contrast enhancement
Due to the absorption and scattering of light, underwater captured images often face serious
quality degradation issues. In this letter, we propose to cope with the aforementioned issues …
quality degradation issues. In this letter, we propose to cope with the aforementioned issues …
Revitalizing convolutional network for image restoration
Image restoration aims to reconstruct a high-quality image from its corrupted version, playing
essential roles in many scenarios. Recent years have witnessed a paradigm shift in image …
essential roles in many scenarios. Recent years have witnessed a paradigm shift in image …