Algorithmic fairness in artificial intelligence for medicine and healthcare

RJ Chen, JJ Wang, DFK Williamson, TY Chen… - Nature biomedical …, 2023 - nature.com
In healthcare, the development and deployment of insufficiently fair systems of artificial
intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models …

Federated learning for internet of things: A comprehensive survey

DC Nguyen, M Ding, PN Pathirana… - … Surveys & Tutorials, 2021 - ieeexplore.ieee.org
The Internet of Things (IoT) is penetrating many facets of our daily life with the proliferation of
intelligent services and applications empowered by artificial intelligence (AI). Traditionally …

Federated learning for smart healthcare: A survey

DC Nguyen, QV Pham, PN Pathirana, M Ding… - ACM Computing …, 2022 - dl.acm.org
Recent advances in communication technologies and the Internet-of-Medical-Things (IOMT)
have transformed smart healthcare enabled by artificial intelligence (AI). Traditionally, AI …

Federated learning on non-IID data: A survey

H Zhu, J Xu, S Liu, Y ** - Neurocomputing, 2021 - Elsevier
Federated learning is an emerging distributed machine learning framework for privacy
preservation. However, models trained in federated learning usually have worse …

[HTML][HTML] The future of digital health with federated learning

N Rieke, J Hancox, W Li, F Milletari, HR Roth… - NPJ digital …, 2020 - nature.com
Data-driven machine learning (ML) has emerged as a promising approach for building
accurate and robust statistical models from medical data, which is collected in huge volumes …

[HTML][HTML] Model aggregation techniques in federated learning: A comprehensive survey

P Qi, D Chiaro, A Guzzo, M Ianni, G Fortino… - Future Generation …, 2024 - Elsevier
Federated learning (FL) is a distributed machine learning (ML) approach that enables
models to be trained on client devices while ensuring the privacy of user data. Model …

Federated learning for healthcare: Systematic review and architecture proposal

RS Antunes, C André da Costa, A Küderle… - ACM Transactions on …, 2022 - dl.acm.org
The use of machine learning (ML) with electronic health records (EHR) is growing in
popularity as a means to extract knowledge that can improve the decision-making process in …

Attack of the tails: Yes, you really can backdoor federated learning

H Wang, K Sreenivasan, S Rajput… - Advances in …, 2020 - proceedings.neurips.cc
Due to its decentralized nature, Federated Learning (FL) lends itself to adversarial attacks in
the form of backdoors during training. The goal of a backdoor is to corrupt the performance …

Federated learning: A survey on enabling technologies, protocols, and applications

M Aledhari, R Razzak, RM Parizi, F Saeed - IEEE Access, 2020 - ieeexplore.ieee.org
This paper provides a comprehensive study of Federated Learning (FL) with an emphasis
on enabling software and hardware platforms, protocols, real-life applications and use …

Shifting machine learning for healthcare from development to deployment and from models to data

A Zhang, L **ng, J Zou, JC Wu - Nature Biomedical Engineering, 2022 - nature.com
In the past decade, the application of machine learning (ML) to healthcare has helped drive
the automation of physician tasks as well as enhancements in clinical capabilities and …