[HTML][HTML] 1D convolutional neural networks and applications: A survey

S Kiranyaz, O Avci, O Abdeljaber, T Ince… - Mechanical systems and …, 2021 - Elsevier
During the last decade, Convolutional Neural Networks (CNNs) have become the de facto
standard for various Computer Vision and Machine Learning operations. CNNs are feed …

Deep learning for healthcare applications based on physiological signals: A review

O Faust, Y Hagiwara, TJ Hong, OS Lih… - Computer methods and …, 2018 - Elsevier
Background and objective: We have cast the net into the ocean of knowledge to retrieve the
latest scientific research on deep learning methods for physiological signals. We found 53 …

Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network

AY Hannun, P Rajpurkar, M Haghpanahi, GH Tison… - Nature medicine, 2019 - nature.com
Computerized electrocardiogram (ECG) interpretation plays a critical role in the clinical ECG
workflow. Widely available digital ECG data and the algorithmic paradigm of deep learning …

Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals

UR Acharya, SL Oh, Y Hagiwara, JH Tan… - Computers in biology and …, 2018 - Elsevier
An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of
epilepsy. The EEG signal contains information about the electrical activity of the brain …

A deep convolutional neural network model to classify heartbeats

UR Acharya, SL Oh, Y Hagiwara, JH Tan… - Computers in biology …, 2017 - Elsevier
The electrocardiogram (ECG) is a standard test used to monitor the activity of the heart.
Many cardiac abnormalities will be manifested in the ECG including arrhythmia which is a …

Arrhythmia detection using deep convolutional neural network with long duration ECG signals

Ö Yıldırım, P Pławiak, RS Tan, UR Acharya - Computers in biology and …, 2018 - Elsevier
This article presents a new deep learning approach for cardiac arrhythmia (17 classes)
detection based on long-duration electrocardiography (ECG) signal analysis …

Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals

UR Acharya, H Fujita, SL Oh, Y Hagiwara, JH Tan… - Information …, 2017 - Elsevier
The electrocardiogram (ECG) is a useful diagnostic tool to diagnose various cardiovascular
diseases (CVDs) such as myocardial infarction (MI). The ECG records the heart's electrical …

[HTML][HTML] A review on deep learning methods for ECG arrhythmia classification

Z Ebrahimi, M Loni, M Daneshtalab… - Expert Systems with …, 2020 - Elsevier
Deep Learning (DL) has recently become a topic of study in different applications including
healthcare, in which timely detection of anomalies on Electrocardiogram (ECG) can play a …

A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification

Ö Yildirim - Computers in biology and medicine, 2018 - Elsevier
Long-short term memory networks (LSTMs), which have recently emerged in sequential data
analysis, are the most widely used type of recurrent neural networks (RNNs) architecture …

Deep learning in ECG diagnosis: A review

X Liu, H Wang, Z Li, L Qin - Knowledge-Based Systems, 2021 - Elsevier
Cardiovascular disease (CVD) is a general term for a series of heart or blood vessels
abnormality that serves as a global leading reason for death. The earlier the abnormal heart …