Deep learning for hyperspectral image classification: An overview

S Li, W Song, L Fang, Y Chen… - … on Geoscience and …, 2019 - ieeexplore.ieee.org
Hyperspectral image (HSI) classification has become a hot topic in the field of remote
sensing. In general, the complex characteristics of hyperspectral data make the accurate …

Advances in hyperspectral image and signal processing: A comprehensive overview of the state of the art

P Ghamisi, N Yokoya, J Li, W Liao, S Liu… - … and Remote Sensing …, 2017 - ieeexplore.ieee.org
Recent advances in airborne and spaceborne hyperspectral imaging technology have
provided end users with rich spectral, spatial, and temporal information. They have made a …

Multi-feature fusion: Graph neural network and CNN combining for hyperspectral image classification

Y Ding, Z Zhang, X Zhao, D Hong, W Cai, C Yu, N Yang… - Neurocomputing, 2022 - Elsevier
Due to its impressive representation power, the graph convolutional network (GCN) has
attracted increasing attention in the hyperspectral image (HSI) classification. However, the …

CNN-enhanced graph convolutional network with pixel-and superpixel-level feature fusion for hyperspectral image classification

Q Liu, L **ao, J Yang, Z Wei - IEEE Transactions on Geoscience …, 2020 - ieeexplore.ieee.org
Recently, the graph convolutional network (GCN) has drawn increasing attention in the
hyperspectral image (HSI) classification. Compared with the convolutional neural network …

Hyperspectral image classification—Traditional to deep models: A survey for future prospects

M Ahmad, S Shabbir, SK Roy, D Hong… - IEEE journal of …, 2021 - ieeexplore.ieee.org
Hyperspectral imaging (HSI) has been extensively utilized in many real-life applications
because it benefits from the detailed spectral information contained in each pixel. Notably …

Classification of hyperspectral image based on double-branch dual-attention mechanism network

R Li, S Zheng, C Duan, Y Yang, X Wang - Remote Sensing, 2020 - mdpi.com
In recent years, researchers have paid increasing attention on hyperspectral image (HSI)
classification using deep learning methods. To improve the accuracy and reduce the training …

Hyperspectral image classification with convolutional neural network and active learning

X Cao, J Yao, Z Xu, D Meng - IEEE Transactions on Geoscience …, 2020 - ieeexplore.ieee.org
Deep neural network has been extensively applied to hyperspectral image (HSI)
classification recently. However, its success is greatly attributed to numerous labeled …

Spectral partitioning residual network with spatial attention mechanism for hyperspectral image classification

X Zhang, S Shang, X Tang, J Feng… - IEEE transactions on …, 2021 - ieeexplore.ieee.org
Hyperspectral image (HSI) classification is one of the most important tasks in hyperspectral
data analysis. Convolutional neural networks (CNN) have been introduced to HSI …

Spectral–spatial classification of hyperspectral imagery with 3D convolutional neural network

Y Li, H Zhang, Q Shen - Remote Sensing, 2017 - mdpi.com
Recent research has shown that using spectral–spatial information can considerably
improve the performance of hyperspectral image (HSI) classification. HSI data is typically …

A new deep convolutional neural network for fast hyperspectral image classification

ME Paoletti, JM Haut, J Plaza, A Plaza - ISPRS journal of photogrammetry …, 2018 - Elsevier
Artificial neural networks (ANNs) have been widely used for the analysis of remotely sensed
imagery. In particular, convolutional neural networks (CNNs) are gaining more and more …