Understanding of machine learning with deep learning: architectures, workflow, applications and future directions

MM Taye - Computers, 2023 - mdpi.com
In recent years, deep learning (DL) has been the most popular computational approach in
the field of machine learning (ML), achieving exceptional results on a variety of complex …

The evolution of distributed systems for graph neural networks and their origin in graph processing and deep learning: A survey

J Vatter, R Mayer, HA Jacobsen - ACM Computing Surveys, 2023 - dl.acm.org
Graph neural networks (GNNs) are an emerging research field. This specialized deep
neural network architecture is capable of processing graph structured data and bridges the …

Graph of thoughts: Solving elaborate problems with large language models

M Besta, N Blach, A Kubicek, R Gerstenberger… - Proceedings of the …, 2024 - ojs.aaai.org
Abstract We introduce Graph of Thoughts (GoT): a framework that advances prompting
capabilities in large language models (LLMs) beyond those offered by paradigms such as …

Theoretical understanding of convolutional neural network: Concepts, architectures, applications, future directions

MM Taye - Computation, 2023 - mdpi.com
Convolutional neural networks (CNNs) are one of the main types of neural networks used for
image recognition and classification. CNNs have several uses, some of which are object …

Graph representation learning in biomedicine and healthcare

MM Li, K Huang, M Zitnik - Nature Biomedical Engineering, 2022 - nature.com
Networks—or graphs—are universal descriptors of systems of interacting elements. In
biomedicine and healthcare, they can represent, for example, molecular interactions …

Deep learning with graph convolutional networks: An overview and latest applications in computational intelligence

UA Bhatti, H Tang, G Wu, S Marjan… - International Journal of …, 2023 - Wiley Online Library
Convolutional neural networks (CNNs) have received widespread attention due to their
powerful modeling capabilities and have been successfully applied in natural language …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

A comprehensive survey on deep graph representation learning

W Ju, Z Fang, Y Gu, Z Liu, Q Long, Z Qiao, Y Qin… - Neural Networks, 2024 - Elsevier
Graph representation learning aims to effectively encode high-dimensional sparse graph-
structured data into low-dimensional dense vectors, which is a fundamental task that has …

Study on artificial intelligence: The state of the art and future prospects

C Zhang, Y Lu - Journal of Industrial Information Integration, 2021 - Elsevier
In the world, the technological and industrial revolution is accelerating by the widespread
application of new generation information and communication technologies, such as AI, IoT …

A survey on deep learning and its applications

S Dong, P Wang, K Abbas - Computer Science Review, 2021 - Elsevier
Deep learning, a branch of machine learning, is a frontier for artificial intelligence, aiming to
be closer to its primary goal—artificial intelligence. This paper mainly adopts the summary …