Transformers in vision: A survey
Astounding results from Transformer models on natural language tasks have intrigued the
vision community to study their application to computer vision problems. Among their salient …
vision community to study their application to computer vision problems. Among their salient …
Advances in medical image analysis with vision transformers: a comprehensive review
The remarkable performance of the Transformer architecture in natural language processing
has recently also triggered broad interest in Computer Vision. Among other merits …
has recently also triggered broad interest in Computer Vision. Among other merits …
Run, don't walk: chasing higher FLOPS for faster neural networks
To design fast neural networks, many works have been focusing on reducing the number of
floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does …
floating-point operations (FLOPs). We observe that such reduction in FLOPs, however, does …
Internimage: Exploring large-scale vision foundation models with deformable convolutions
Compared to the great progress of large-scale vision transformers (ViTs) in recent years,
large-scale models based on convolutional neural networks (CNNs) are still in an early …
large-scale models based on convolutional neural networks (CNNs) are still in an early …
Exploring plain vision transformer backbones for object detection
We explore the plain, non-hierarchical Vision Transformer (ViT) as a backbone network for
object detection. This design enables the original ViT architecture to be fine-tuned for object …
object detection. This design enables the original ViT architecture to be fine-tuned for object …
A survey on vision transformer
Transformer, first applied to the field of natural language processing, is a type of deep neural
network mainly based on the self-attention mechanism. Thanks to its strong representation …
network mainly based on the self-attention mechanism. Thanks to its strong representation …
Mvitv2: Improved multiscale vision transformers for classification and detection
In this paper, we study Multiscale Vision Transformers (MViTv2) as a unified architecture for
image and video classification, as well as object detection. We present an improved version …
image and video classification, as well as object detection. We present an improved version …
Visual attention network
While originally designed for natural language processing tasks, the self-attention
mechanism has recently taken various computer vision areas by storm. However, the 2D …
mechanism has recently taken various computer vision areas by storm. However, the 2D …
Groupvit: Semantic segmentation emerges from text supervision
Grou** and recognition are important components of visual scene understanding, eg, for
object detection and semantic segmentation. With end-to-end deep learning systems …
object detection and semantic segmentation. With end-to-end deep learning systems …
Vision transformer with deformable attention
Transformers have recently shown superior performances on various vision tasks. The large,
sometimes even global, receptive field endows Transformer models with higher …
sometimes even global, receptive field endows Transformer models with higher …