In-Context Parametric Inference: Point or Distribution Estimators?

S Mittal, Y Bengio, N Malkin, G Lajoie - arxiv preprint arxiv:2502.11617, 2025 - arxiv.org
Bayesian and frequentist inference are two fundamental paradigms in statistical estimation.
Bayesian methods treat hypotheses as random variables, incorporating priors and updating …

Minimal Ranks, Maximum Confidence: Parameter-efficient Uncertainty Quantification for LoRA

P Marszałek, K Bałazy, J Tabor… - arxiv preprint arxiv …, 2025 - arxiv.org
Low-Rank Adaptation (LoRA) enables parameter-efficient fine-tuning of large language
models by decomposing weight updates into low-rank matrices, significantly reducing …

ETAGE: Enhanced Test Time Adaptation with Integrated Entropy and Gradient Norms for Robust Model Performance

A Shamsi, R Becirovic, A Argha, E Abbasnejad… - arxiv preprint arxiv …, 2024 - arxiv.org
Test time adaptation (TTA) equips deep learning models to handle unseen test data that
deviates from the training distribution, even when source data is inaccessible. While …

Can Model Randomization Offer Robustness Against Query-Based Black-Box Attacks?

QV Vo, BG Doan, E Abbasnejad, D Ranasinghe - openreview.net
Deep neural networks are misguided by simple-to-craft, imperceptible adversarial
perturbations to inputs. Now, it is possible to craft such perturbations solely using model …