Vision-based semantic segmentation in scene understanding for autonomous driving: Recent achievements, challenges, and outlooks

K Muhammad, T Hussain, H Ullah… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
Scene understanding plays a crucial role in autonomous driving by utilizing sensory data for
contextual information extraction and decision making. Beyond modeling advances, the …

MIC: Masked image consistency for context-enhanced domain adaptation

L Hoyer, D Dai, H Wang… - Proceedings of the IEEE …, 2023 - openaccess.thecvf.com
In unsupervised domain adaptation (UDA), a model trained on source data (eg synthetic) is
adapted to target data (eg real-world) without access to target annotation. Most previous …

On the opportunities and risks of foundation models

R Bommasani, DA Hudson, E Adeli, R Altman… - arxiv preprint arxiv …, 2021 - arxiv.org
AI is undergoing a paradigm shift with the rise of models (eg, BERT, DALL-E, GPT-3) that are
trained on broad data at scale and are adaptable to a wide range of downstream tasks. We …

Hrda: Context-aware high-resolution domain-adaptive semantic segmentation

L Hoyer, D Dai, L Van Gool - European conference on computer vision, 2022 - Springer
Unsupervised domain adaptation (UDA) aims to adapt a model trained on the source
domain (eg synthetic data) to the target domain (eg real-world data) without requiring further …

ACDC: The adverse conditions dataset with correspondences for semantic driving scene understanding

C Sakaridis, D Dai, L Van Gool - Proceedings of the IEEE …, 2021 - openaccess.thecvf.com
Level 5 autonomy for self-driving cars requires a robust visual perception system that can
parse input images under any visual condition. However, existing semantic segmentation …

Swad: Domain generalization by seeking flat minima

J Cha, S Chun, K Lee, HC Cho… - Advances in Neural …, 2021 - proceedings.neurips.cc
Abstract Domain generalization (DG) methods aim to achieve generalizability to an unseen
target domain by using only training data from the source domains. Although a variety of DG …

In search of lost domain generalization

I Gulrajani, D Lopez-Paz - arxiv preprint arxiv:2007.01434, 2020 - arxiv.org
The goal of domain generalization algorithms is to predict well on distributions different from
those seen during training. While a myriad of domain generalization algorithms exist …

SFNet-N: An improved SFNet algorithm for semantic segmentation of low-light autonomous driving road scenes

H Wang, Y Chen, Y Cai, L Chen, Y Li… - IEEE Transactions …, 2022 - ieeexplore.ieee.org
In recent years, considerable progress has been made in semantic segmentation of images
with favorable environments. However, the environmental perception of autonomous driving …

Sepico: Semantic-guided pixel contrast for domain adaptive semantic segmentation

B **e, S Li, M Li, CH Liu, G Huang… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Domain adaptive semantic segmentation attempts to make satisfactory dense predictions on
an unlabeled target domain by utilizing the supervised model trained on a labeled source …

A fine-grained analysis on distribution shift

O Wiles, S Gowal, F Stimberg, S Alvise-Rebuffi… - arxiv preprint arxiv …, 2021 - arxiv.org
Robustness to distribution shifts is critical for deploying machine learning models in the real
world. Despite this necessity, there has been little work in defining the underlying …