A comprehensive survey of neural architecture search: Challenges and solutions

P Ren, Y **ao, X Chang, PY Huang, Z Li… - ACM Computing …, 2021 - dl.acm.org
Deep learning has made substantial breakthroughs in many fields due to its powerful
automatic representation capabilities. It has been proven that neural architecture design is …

Deep transfer learning for intrusion detection in industrial control networks: A comprehensive review

H Kheddar, Y Himeur, AI Awad - Journal of Network and Computer …, 2023 - Elsevier
Globally, the external internet is increasingly being connected to industrial control systems.
As a result, there is an immediate need to protect these networks from a variety of threats …

Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks

D Hong, B Zhang, H Li, Y Li, J Yao, C Li… - Remote Sensing of …, 2023 - Elsevier
Artificial intelligence (AI) approaches nowadays have gained remarkable success in single-
modality-dominated remote sensing (RS) applications, especially with an emphasis on …

Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion

H Tao, J Qiu, Y Chen, V Stojanovic, L Cheng - Journal of the Franklin …, 2023 - Elsevier
In recent years, data-driven methods have been widely used in rolling bearing fault
diagnosis with great success, which mainly relies on the same data distribution and massive …

Single-source domain expansion network for cross-scene hyperspectral image classification

Y Zhang, W Li, W Sun, R Tao… - IEEE Transactions on …, 2023 - ieeexplore.ieee.org
Currently, cross-scene hyperspectral image (HSI) classification has drawn increasing
attention. It is necessary to train a model only on source domain (SD) and directly …

Maximum mean square discrepancy: a new discrepancy representation metric for mechanical fault transfer diagnosis

Q Qian, Y Wang, T Zhang, Y Qin - Knowledge-Based Systems, 2023 - Elsevier
Discrepancy representation metric completely determines the transfer diagnosis
performance of deep domain adaptation methods. Maximum mean discrepancy (MMD) …

Generalizing to unseen domains: A survey on domain generalization

J Wang, C Lan, C Liu, Y Ouyang, T Qin… - IEEE transactions on …, 2022 - ieeexplore.ieee.org
Machine learning systems generally assume that the training and testing distributions are
the same. To this end, a key requirement is to develop models that can generalize to unseen …

Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions

Y Ding, M Jia, J Zhuang, Y Cao, X Zhao… - Reliability Engineering & …, 2023 - Elsevier
The tremendous success of deep learning and transfer learning broadened the scope of
fault diagnosis, especially the latter further improved the diagnosis accuracy under multiple …

Graph information aggregation cross-domain few-shot learning for hyperspectral image classification

Y Zhang, W Li, M Zhang, S Wang… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Most domain adaptation (DA) methods in cross-scene hyperspectral image classification
focus on cases where source data (SD) and target data (TD) with the same classes are …

Adarnn: Adaptive learning and forecasting of time series

Y Du, J Wang, W Feng, S Pan, T Qin, R Xu… - Proceedings of the 30th …, 2021 - dl.acm.org
Time series has wide applications in the real world and is known to be difficult to forecast.
Since its statistical properties change over time, its distribution also changes temporally …