Advances, challenges and opportunities in creating data for trustworthy AI

W Liang, GA Tadesse, D Ho, L Fei-Fei… - Nature Machine …, 2022 - nature.com
As artificial intelligence (AI) transitions from research to deployment, creating the appropriate
datasets and data pipelines to develop and evaluate AI models is increasingly the biggest …

Self-driving laboratories for chemistry and materials science

G Tom, SP Schmid, SG Baird, Y Cao, K Darvish… - Chemical …, 2024 - ACS Publications
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method.
Through the automation of experimental workflows, along with autonomous experimental …

Objaverse: A universe of annotated 3d objects

M Deitke, D Schwenk, J Salvador… - Proceedings of the …, 2023 - openaccess.thecvf.com
Massive data corpora like WebText, Wikipedia, Conceptual Captions, WebImageText, and
LAION have propelled recent dramatic progress in AI. Large neural models trained on such …

Tidybot: Personalized robot assistance with large language models

J Wu, R Antonova, A Kan, M Lepert, A Zeng, S Song… - Autonomous …, 2023 - Springer
For a robot to personalize physical assistance effectively, it must learn user preferences that
can be generally reapplied to future scenarios. In this work, we investigate personalization of …

Unisim: A neural closed-loop sensor simulator

Z Yang, Y Chen, J Wang… - Proceedings of the …, 2023 - openaccess.thecvf.com
Rigorously testing autonomy systems is essential for making safe self-driving vehicles (SDV)
a reality. It requires one to generate safety critical scenarios beyond what can be collected …

Foundation models in robotics: Applications, challenges, and the future

R Firoozi, J Tucker, S Tian… - … Journal of Robotics …, 2023 - journals.sagepub.com
We survey applications of pretrained foundation models in robotics. Traditional deep
learning models in robotics are trained on small datasets tailored for specific tasks, which …

Diffusion-based generation, optimization, and planning in 3d scenes

S Huang, Z Wang, P Li, B Jia, T Liu… - Proceedings of the …, 2023 - openaccess.thecvf.com
We introduce SceneDiffuser, a conditional generative model for 3D scene understanding.
SceneDiffuser provides a unified model for solving scene-conditioned generation …

🏘️ ProcTHOR: Large-Scale Embodied AI Using Procedural Generation

M Deitke, E VanderBilt, A Herrasti… - Advances in …, 2022 - proceedings.neurips.cc
Massive datasets and high-capacity models have driven many recent advancements in
computer vision and natural language understanding. This work presents a platform to …

[PDF][PDF] Vima: General robot manipulation with multimodal prompts

Y Jiang, A Gupta, Z Zhang, G Wang… - arxiv preprint …, 2022 - authors.library.caltech.edu
Prompt-based learning has emerged as a successful paradigm in natural language
processing, where a single general-purpose language model can be instructed to perform …

Behavior-1k: A benchmark for embodied ai with 1,000 everyday activities and realistic simulation

C Li, R Zhang, J Wong, C Gokmen… - … on Robot Learning, 2023 - proceedings.mlr.press
We present BEHAVIOR-1K, a comprehensive simulation benchmark for human-centered
robotics. BEHAVIOR-1K includes two components, guided and motivated by the results of an …