The emerging threat of ai-driven cyber attacks: A review

B Guembe, A Azeta, S Misra, VC Osamor… - Applied Artificial …, 2022 - Taylor & Francis
Cyberattacks are becoming more sophisticated and ubiquitous. Cybercriminals are
inevitably adopting Artificial Intelligence (AI) techniques to evade the cyberspace and cause …

Adversarial attacks and defenses in images, graphs and text: A review

H Xu, Y Ma, HC Liu, D Deb, H Liu, JL Tang… - International journal of …, 2020 - Springer
Deep neural networks (DNN) have achieved unprecedented success in numerous machine
learning tasks in various domains. However, the existence of adversarial examples raises …

The role of machine learning in cybersecurity

G Apruzzese, P Laskov, E Montes de Oca… - … Threats: Research and …, 2023 - dl.acm.org
Machine Learning (ML) represents a pivotal technology for current and future information
systems, and many domains already leverage the capabilities of ML. However, deployment …

Artificial intelligence, cyber-threats and Industry 4.0: Challenges and opportunities

A Bécue, I Praça, J Gama - Artificial Intelligence Review, 2021 - Springer
This survey paper discusses opportunities and threats of using artificial intelligence (AI)
technology in the manufacturing sector with consideration for offensive and defensive uses …

Adversarial examples: A survey of attacks and defenses in deep learning-enabled cybersecurity systems

M Macas, C Wu, W Fuertes - Expert Systems with Applications, 2024 - Elsevier
Over the last few years, the adoption of machine learning in a wide range of domains has
been remarkable. Deep learning, in particular, has been extensively used to drive …

A survey of deep learning methods for cyber security

DS Berman, AL Buczak, JS Chavis, CL Corbett - Information, 2019 - mdpi.com
This survey paper describes a literature review of deep learning (DL) methods for cyber
security applications. A short tutorial-style description of each DL method is provided …

Adversarial examples: Attacks and defenses for deep learning

X Yuan, P He, Q Zhu, X Li - IEEE transactions on neural …, 2019 - ieeexplore.ieee.org
With rapid progress and significant successes in a wide spectrum of applications, deep
learning is being applied in many safety-critical environments. However, deep neural …

Adversarial machine learning attacks and defense methods in the cyber security domain

I Rosenberg, A Shabtai, Y Elovici… - ACM Computing Surveys …, 2021 - dl.acm.org
In recent years, machine learning algorithms, and more specifically deep learning
algorithms, have been widely used in many fields, including cyber security. However …

A visualized botnet detection system based deep learning for the internet of things networks of smart cities

R Vinayakumar, M Alazab, S Srinivasan… - IEEE Transactions …, 2020 - ieeexplore.ieee.org
Internet of Things applications for smart cities have currently become a primary target for
advanced persistent threats of botnets. This article proposes a botnet detection system …

The ai-based cyber threat landscape: A survey

N Kaloudi, J Li - ACM Computing Surveys (CSUR), 2020 - dl.acm.org
Recent advancements in artificial intelligence (AI) technologies have induced tremendous
growth in innovation and automation. Although these AI technologies offer significant …