A review of convolutional neural network architectures and their optimizations
The research advances concerning the typical architectures of convolutional neural
networks (CNNs) as well as their optimizations are analyzed and elaborated in detail in this …
networks (CNNs) as well as their optimizations are analyzed and elaborated in detail in this …
Deep learning-based 3D point cloud classification: A systematic survey and outlook
In recent years, point cloud representation has become one of the research hotspots in the
field of computer vision, and has been widely used in many fields, such as autonomous …
field of computer vision, and has been widely used in many fields, such as autonomous …
Efficient long-range attention network for image super-resolution
Recently, transformer-based methods have demonstrated impressive results in various
vision tasks, including image super-resolution (SR), by exploiting the self-attention (SA) for …
vision tasks, including image super-resolution (SR), by exploiting the self-attention (SA) for …
SwinSUNet: Pure transformer network for remote sensing image change detection
C Zhang, L Wang, S Cheng, Y Li - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
Convolutional neural network (CNN) can extract effective semantic features, so it was widely
used for remote sensing image change detection (CD) in the latest years. CNN has acquired …
used for remote sensing image change detection (CD) in the latest years. CNN has acquired …
Swinir: Image restoration using swin transformer
Image restoration is a long-standing low-level vision problem that aims to restore high-
quality images from low-quality images (eg, downscaled, noisy and compressed images) …
quality images from low-quality images (eg, downscaled, noisy and compressed images) …
Do vision transformers see like convolutional neural networks?
Convolutional neural networks (CNNs) have so far been the de-facto model for visual data.
Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or …
Recent work has shown that (Vision) Transformer models (ViT) can achieve comparable or …
Mst++: Multi-stage spectral-wise transformer for efficient spectral reconstruction
Existing leading methods for spectral reconstruction (SR) focus on designing deeper or
wider convolutional neural networks (CNNs) to learn the end-to-end map** from the RGB …
wider convolutional neural networks (CNNs) to learn the end-to-end map** from the RGB …
A survey of visual transformers
Transformer, an attention-based encoder–decoder model, has already revolutionized the
field of natural language processing (NLP). Inspired by such significant achievements, some …
field of natural language processing (NLP). Inspired by such significant achievements, some …
Conformer: Local features coupling global representations for visual recognition
Abstract Within Convolutional Neural Network (CNN), the convolution operations are good
at extracting local features but experience difficulty to capture global representations. Within …
at extracting local features but experience difficulty to capture global representations. Within …
Multiscale vision transformers
Abstract We present Multiscale Vision Transformers (MViT) for video and image recognition,
by connecting the seminal idea of multiscale feature hierarchies with transformer models …
by connecting the seminal idea of multiscale feature hierarchies with transformer models …