Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges

B Bischl, M Binder, M Lang, T Pielok… - … : Data Mining and …, 2023 - Wiley Online Library
Most machine learning algorithms are configured by a set of hyperparameters whose values
must be carefully chosen and which often considerably impact performance. To avoid a time …

[HTML][HTML] AutoML: A systematic review on automated machine learning with neural architecture search

I Salehin, MS Islam, P Saha, SM Noman, A Tuni… - Journal of Information …, 2024 - Elsevier
Abstract AutoML (Automated Machine Learning) is an emerging field that aims to automate
the process of building machine learning models. AutoML emerged to increase productivity …

Trustworthy graph neural networks: Aspects, methods, and trends

H Zhang, B Wu, X Yuan, S Pan, H Tong… - Proceedings of the …, 2024 - ieeexplore.ieee.org
Graph neural networks (GNNs) have emerged as a series of competent graph learning
methods for diverse real-world scenarios, ranging from daily applications such as …

Neural architecture search for transformers: A survey

KT Chitty-Venkata, M Emani, V Vishwanath… - IEEE …, 2022 - ieeexplore.ieee.org
Transformer-based Deep Neural Network architectures have gained tremendous interest
due to their effectiveness in various applications across Natural Language Processing (NLP) …

Deep reinforcement learning for transportation network combinatorial optimization: A survey

Q Wang, C Tang - Knowledge-Based Systems, 2021 - Elsevier
Traveling salesman and vehicle routing problems with their variants, as classic
combinatorial optimization problems, have attracted considerable attention for decades of …

Unsupervised graph neural architecture search with disentangled self-supervision

Z Zhang, X Wang, Z Zhang, G Shen… - Advances in Neural …, 2023 - proceedings.neurips.cc
The existing graph neural architecture search (GNAS) methods heavily rely on supervised
labels during the search process, failing to handle ubiquitous scenarios where supervisions …

Graph neural architecture search: A survey

BM Oloulade, J Gao, J Chen, T Lyu… - Tsinghua Science and …, 2021 - ieeexplore.ieee.org
In academia and industries, graph neural networks (GNNs) have emerged as a powerful
approach to graph data processing ranging from node classification and link prediction tasks …

Reinforcement-enhanced autoregressive feature transformation: Gradient-steered search in continuous space for postfix expressions

D Wang, M **ao, M Wu, Y Zhou… - Advances in Neural …, 2023 - proceedings.neurips.cc
Feature transformation aims to generate new pattern-discriminative feature space from
original features to improve downstream machine learning (ML) task performances …

Pasca: A graph neural architecture search system under the scalable paradigm

W Zhang, Y Shen, Z Lin, Y Li, X Li, W Ouyang… - Proceedings of the …, 2022 - dl.acm.org
Graph neural networks (GNNs) have achieved state-of-the-art performance in various graph-
based tasks. However, as mainstream GNNs are designed based on the neural message …

Pooling architecture search for graph classification

L Wei, H Zhao, Q Yao, Z He - Proceedings of the 30th ACM International …, 2021 - dl.acm.org
Graph classification is an important problem with applications across many domains, like
chemistry and bioinformatics, for which graph neural networks (GNNs) have been state-of …