Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges
Most machine learning algorithms are configured by a set of hyperparameters whose values
must be carefully chosen and which often considerably impact performance. To avoid a time …
must be carefully chosen and which often considerably impact performance. To avoid a time …
[HTML][HTML] AutoML: A systematic review on automated machine learning with neural architecture search
Abstract AutoML (Automated Machine Learning) is an emerging field that aims to automate
the process of building machine learning models. AutoML emerged to increase productivity …
the process of building machine learning models. AutoML emerged to increase productivity …
Trustworthy graph neural networks: Aspects, methods, and trends
Graph neural networks (GNNs) have emerged as a series of competent graph learning
methods for diverse real-world scenarios, ranging from daily applications such as …
methods for diverse real-world scenarios, ranging from daily applications such as …
Neural architecture search for transformers: A survey
Transformer-based Deep Neural Network architectures have gained tremendous interest
due to their effectiveness in various applications across Natural Language Processing (NLP) …
due to their effectiveness in various applications across Natural Language Processing (NLP) …
Deep reinforcement learning for transportation network combinatorial optimization: A survey
Q Wang, C Tang - Knowledge-Based Systems, 2021 - Elsevier
Traveling salesman and vehicle routing problems with their variants, as classic
combinatorial optimization problems, have attracted considerable attention for decades of …
combinatorial optimization problems, have attracted considerable attention for decades of …
Unsupervised graph neural architecture search with disentangled self-supervision
The existing graph neural architecture search (GNAS) methods heavily rely on supervised
labels during the search process, failing to handle ubiquitous scenarios where supervisions …
labels during the search process, failing to handle ubiquitous scenarios where supervisions …
Graph neural architecture search: A survey
In academia and industries, graph neural networks (GNNs) have emerged as a powerful
approach to graph data processing ranging from node classification and link prediction tasks …
approach to graph data processing ranging from node classification and link prediction tasks …
Reinforcement-enhanced autoregressive feature transformation: Gradient-steered search in continuous space for postfix expressions
Feature transformation aims to generate new pattern-discriminative feature space from
original features to improve downstream machine learning (ML) task performances …
original features to improve downstream machine learning (ML) task performances …
Pasca: A graph neural architecture search system under the scalable paradigm
Graph neural networks (GNNs) have achieved state-of-the-art performance in various graph-
based tasks. However, as mainstream GNNs are designed based on the neural message …
based tasks. However, as mainstream GNNs are designed based on the neural message …
Pooling architecture search for graph classification
Graph classification is an important problem with applications across many domains, like
chemistry and bioinformatics, for which graph neural networks (GNNs) have been state-of …
chemistry and bioinformatics, for which graph neural networks (GNNs) have been state-of …