Turnitin
降AI改写
早检测系统
早降重系统
Turnitin-UK版
万方检测-期刊版
维普编辑部版
Grammarly检测
Paperpass检测
checkpass检测
PaperYY检测
Challenges in deploying machine learning: a survey of case studies
In recent years, machine learning has transitioned from a field of academic research interest
to a field capable of solving real-world business problems. However, the deployment of …
to a field capable of solving real-world business problems. However, the deployment of …
Overview and importance of data quality for machine learning tasks
It is well understood from literature that the performance of a machine learning (ML) model is
upper bounded by the quality of the data. While researchers and practitioners have focused …
upper bounded by the quality of the data. While researchers and practitioners have focused …
“Everyone wants to do the model work, not the data work”: Data Cascades in High-Stakes AI
AI models are increasingly applied in high-stakes domains like health and conservation.
Data quality carries an elevated significance in high-stakes AI due to its heightened …
Data quality carries an elevated significance in high-stakes AI due to its heightened …
Data collection and quality challenges in deep learning: A data-centric ai perspective
Data-centric AI is at the center of a fundamental shift in software engineering where machine
learning becomes the new software, powered by big data and computing infrastructure …
learning becomes the new software, powered by big data and computing infrastructure …
Bridging the gap between ethics and practice: guidelines for reliable, safe, and trustworthy human-centered AI systems
B Shneiderman - ACM Transactions on Interactive Intelligent Systems …, 2020 - dl.acm.org
This article attempts to bridge the gap between widely discussed ethical principles of Human-
centered AI (HCAI) and practical steps for effective governance. Since HCAI systems are …
centered AI (HCAI) and practical steps for effective governance. Since HCAI systems are …
Oort: Efficient federated learning via guided participant selection
Federated Learning (FL) is an emerging direction in distributed machine learning (ML) that
enables in-situ model training and testing on edge data. Despite having the same end goals …
enables in-situ model training and testing on edge data. Despite having the same end goals …
Machine learning testing: Survey, landscapes and horizons
This paper provides a comprehensive survey of techniques for testing machine learning
systems; Machine Learning Testing (ML testing) research. It covers 144 papers on testing …
systems; Machine Learning Testing (ML testing) research. It covers 144 papers on testing …
Software engineering for AI-based systems: a survey
AI-based systems are software systems with functionalities enabled by at least one AI
component (eg, for image-, speech-recognition, and autonomous driving). AI-based systems …
component (eg, for image-, speech-recognition, and autonomous driving). AI-based systems …
[PDF][PDF] Lakehouse: a new generation of open platforms that unify data warehousing and advanced analytics
This paper argues that the data warehouse architecture as we know it today will wither in the
coming years and be replaced by a new architectural pattern, the Lakehouse, which will (i) …
coming years and be replaced by a new architectural pattern, the Lakehouse, which will (i) …
Collaboration challenges in building ml-enabled systems: Communication, documentation, engineering, and process
The introduction of machine learning (ML) components in software projects has created the
need for software engineers to collaborate with data scientists and other specialists. While …
need for software engineers to collaborate with data scientists and other specialists. While …