Sim-to-real transfer in deep reinforcement learning for robotics: a survey

W Zhao, JP Queralta… - 2020 IEEE symposium …, 2020 - ieeexplore.ieee.org
Deep reinforcement learning has recently seen huge success across multiple areas in the
robotics domain. Owing to the limitations of gathering real-world data, ie, sample inefficiency …

[HTML][HTML] Robot learning towards smart robotic manufacturing: A review

Z Liu, Q Liu, W Xu, L Wang, Z Zhou - Robotics and Computer-Integrated …, 2022 - Elsevier
Robotic equipment has been playing a central role since the proposal of smart
manufacturing. Since the beginning of the first integration of industrial robots into production …

A review of physics simulators for robotic applications

J Collins, S Chand, A Vanderkop, D Howard - IEEE Access, 2021 - ieeexplore.ieee.org
The use of simulators in robotics research is widespread, underpinning the majority of recent
advances in the field. There are now more options available to researchers than ever before …

An introduction to deep reinforcement learning

V François-Lavet, P Henderson, R Islam… - … and Trends® in …, 2018 - nowpublishers.com
Deep reinforcement learning is the combination of reinforcement learning (RL) and deep
learning. This field of research has been able to solve a wide range of complex …

[КНИГА][B] Synthetic data for deep learning

SI Nikolenko - 2021 - Springer
You are holding in your hands… oh, come on, who holds books like this in their hands
anymore? Anyway, you are reading this, and it means that I have managed to release one of …

Learning dexterous in-hand manipulation

OAIM Andrychowicz, B Baker… - … Journal of Robotics …, 2020 - journals.sagepub.com
We use reinforcement learning (RL) to learn dexterous in-hand manipulation policies that
can perform vision-based object reorientation on a physical Shadow Dexterous Hand. The …