Colloquium: Nonthermal pathways to ultrafast control in quantum materials
Recent progress in utilizing ultrafast light-matter interaction to control the macroscopic
properties of quantum materials is reviewed. Particular emphasis is placed on photoinduced …
properties of quantum materials is reviewed. Particular emphasis is placed on photoinduced …
Band structure engineering and non-equilibrium dynamics in Floquet topological insulators
Non-equilibrium topological phenomena can be induced in quantum many-body systems
using time-periodic fields (for example, by laser or microwave illumination). This Review …
using time-periodic fields (for example, by laser or microwave illumination). This Review …
Time-crystalline eigenstate order on a quantum processor
Quantum many-body systems display rich phase structure in their low-temperature
equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was …
equilibrium states. However, much of nature is not in thermal equilibrium. Remarkably, it was …
Floquet engineering of quantum materials
Floquet engineering, the control of quantum systems using periodic driving, is an old
concept in condensed matter physics dating back to ideas such as the inverse Faraday …
concept in condensed matter physics dating back to ideas such as the inverse Faraday …
Long-range interacting quantum systems
In this review recent investigations are summarized of many-body quantum systems with
long-range interactions, which are currently realized in Rydberg atom arrays, dipolar …
long-range interactions, which are currently realized in Rydberg atom arrays, dipolar …
Observing non-ergodicity due to kinetic constraints in tilted Fermi-Hubbard chains
The thermalization of isolated quantum many-body systems is deeply related to fundamental
questions of quantum information theory. While integrable or many-body localized systems …
questions of quantum information theory. While integrable or many-body localized systems …
Quantum chaos challenges many-body localization
Characterizing states of matter through the lens of their ergodic properties is a fascinating
new direction of research. In the quantum realm, the many-body localization (MBL) was …
new direction of research. In the quantum realm, the many-body localization (MBL) was …
Speed limits and locality in many-body quantum dynamics
We review the mathematical speed limits on quantum information processing in many-body
systems. After the proof of the Lieb–Robinson Theorem in 1972, the past two decades have …
systems. After the proof of the Lieb–Robinson Theorem in 1972, the past two decades have …
Tailoring quantum gases by Floquet engineering
Floquet engineering is the concept of tailoring a system by a periodic drive, and it is
increasingly employed in many areas of physics. Ultracold atoms in optical lattices offer a …
increasingly employed in many areas of physics. Ultracold atoms in optical lattices offer a …
Maximum Entropy Principle in Deep Thermalization and in Hilbert-Space Ergodicity
We report universal statistical properties displayed by ensembles of pure states that
naturally emerge in quantum many-body systems. Specifically, two classes of state …
naturally emerge in quantum many-body systems. Specifically, two classes of state …