A comprehensive and fair comparison between mlp and kan representations for differential equations and operator networks

K Shukla, JD Toscano, Z Wang, Z Zou… - Computer Methods in …, 2024 - Elsevier
Abstract Kolmogorov–Arnold Networks (KANs) were recently introduced as an alternative
representation model to MLP. Herein, we employ KANs to construct physics-informed …

[HTML][HTML] Deepokan: Deep operator network based on kolmogorov arnold networks for mechanics problems

DW Abueidda, P Pantidis, ME Mobasher - Computer Methods in Applied …, 2025 - Elsevier
The modern digital engineering design often requires costly repeated simulations for
different scenarios. The prediction capability of neural networks (NNs) makes them suitable …

KAN-ODEs: Kolmogorov–Arnold network ordinary differential equations for learning dynamical systems and hidden physics

BC Koenig, S Kim, S Deng - Computer Methods in Applied Mechanics and …, 2024 - Elsevier
Abstract Kolmogorov–Arnold networks (KANs) as an alternative to multi-layer perceptrons
(MLPs) are a recent development demonstrating strong potential for data-driven modeling …

Kan 2.0: Kolmogorov-arnold networks meet science

Z Liu, P Ma, Y Wang, W Matusik, M Tegmark - arxiv preprint arxiv …, 2024 - arxiv.org
A major challenge of AI+ Science lies in their inherent incompatibility: today's AI is primarily
based on connectionism, while science depends on symbolism. To bridge the two worlds …

A survey on kolmogorov-arnold network

S Somvanshi, SA Javed, MM Islam, D Pandit… - arxiv preprint arxiv …, 2024 - arxiv.org
This systematic review explores the theoretical foundations, evolution, applications, and
future potential of Kolmogorov-Arnold Networks (KAN), a neural network model inspired by …

Kolmogorov-arnold networks for time series: Bridging predictive power and interpretability

K Xu, L Chen, S Wang - arxiv preprint arxiv:2406.02496, 2024 - arxiv.org
Kolmogorov-Arnold Networks (KAN) is a groundbreaking model recently proposed by the
MIT team, representing a revolutionary approach with the potential to be a game-changer in …

Kagnns: Kolmogorov-arnold networks meet graph learning

R Bresson, G Nikolentzos, G Panagopoulos… - arxiv preprint arxiv …, 2024 - arxiv.org
In recent years, Graph Neural Networks (GNNs) have become the de facto tool for learning
node and graph representations. Most GNNs typically consist of a sequence of …

KANQAS: Kolmogorov-Arnold network for quantum architecture search

A Kundu, A Sarkar, A Sadhu - EPJ Quantum Technology, 2024 - epjqt.epj.org
Quantum architecture Search (QAS) is a promising direction for optimization and automated
design of quantum circuits towards quantum advantage. Recent techniques in QAS …

Kolmogorov-arnold network for satellite image classification in remote sensing

M Cheon - arxiv preprint arxiv:2406.00600, 2024 - arxiv.org
In this research, we propose the first approach for integrating the Kolmogorov-Arnold
Network (KAN) with various pre-trained Convolutional Neural Network (CNN) models for …

rkan: Rational kolmogorov-arnold networks

AA Aghaei - arxiv preprint arxiv:2406.14495, 2024 - arxiv.org
The development of Kolmogorov-Arnold networks (KANs) marks a significant shift from
traditional multi-layer perceptrons in deep learning. Initially, KANs employed B-spline curves …