Artificial intelligence for geoscience: Progress, challenges and perspectives

T Zhao, S Wang, C Ouyang, M Chen, C Liu, J Zhang… - The Innovation, 2024 - cell.com
This paper explores the evolution of geoscientific inquiry, tracing the progression from
traditional physics-based models to modern data-driven approaches facilitated by significant …

Deep learning for hyperspectral image classification: An overview

S Li, W Song, L Fang, Y Chen… - IEEE transactions on …, 2019 - ieeexplore.ieee.org
Hyperspectral image (HSI) classification has become a hot topic in the field of remote
sensing. In general, the complex characteristics of hyperspectral data make the accurate …

Spectral–spatial feature tokenization transformer for hyperspectral image classification

L Sun, G Zhao, Y Zheng, Z Wu - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
In hyperspectral image (HSI) classification, each pixel sample is assigned to a land-cover
category. In the recent past, convolutional neural network (CNN)-based HSI classification …

Spectral–spatial transformer network for hyperspectral image classification: A factorized architecture search framework

Z Zhong, Y Li, L Ma, J Li… - IEEE Transactions on …, 2021 - ieeexplore.ieee.org
Neural networks have dominated the research of hyperspectral image classification,
attributing to the feature learning capacity of convolution operations. However, the fixed …

Local similarity-based spatial–spectral fusion hyperspectral image classification with deep CNN and Gabor filtering

UA Bhatti, Z Yu, J Chanussot, Z Zeeshan… - … on Geoscience and …, 2021 - ieeexplore.ieee.org
Currently, the different deep neural network (DNN) learning approaches have done much for
the classification of hyperspectral images (HSIs), especially most of them use the …

[HTML][HTML] Classification of hyperspectral image based on double-branch dual-attention mechanism network

R Li, S Zheng, C Duan, Y Yang, X Wang - Remote Sensing, 2020 - mdpi.com
In recent years, researchers have paid increasing attention on hyperspectral image (HSI)
classification using deep learning methods. To improve the accuracy and reduce the training …

Hyperspectral image classification with convolutional neural network and active learning

X Cao, J Yao, Z Xu, D Meng - IEEE Transactions on Geoscience …, 2020 - ieeexplore.ieee.org
Deep neural network has been extensively applied to hyperspectral image (HSI)
classification recently. However, its success is greatly attributed to numerous labeled …

Hyperspectral image classification with deep feature fusion network

W Song, S Li, L Fang, T Lu - IEEE Transactions on Geoscience …, 2018 - ieeexplore.ieee.org
Recently, deep learning has been introduced to classify hyperspectral images (HSIs) and
achieved good performance. In general, deep models adopt a large number of hierarchical …

HSI-BERT: Hyperspectral image classification using the bidirectional encoder representation from transformers

J He, L Zhao, H Yang, M Zhang… - IEEE Transactions on …, 2019 - ieeexplore.ieee.org
Deep learning methods have been widely used in hyperspectral image classification and
have achieved state-of-the-art performance. Nonetheless, the existing deep learning …

Few-shot hyperspectral image classification with unknown classes using multitask deep learning

S Liu, Q Shi, L Zhang - IEEE Transactions on Geoscience and …, 2020 - ieeexplore.ieee.org
Current hyperspectral image classification assumes that a predefined classification system
is closed and complete, and there are no unknown or novel classes in the unseen data …