[HTML][HTML] Forecasting: theory and practice

F Petropoulos, D Apiletti, V Assimakopoulos… - International Journal of …, 2022 - Elsevier
Forecasting has always been at the forefront of decision making and planning. The
uncertainty that surrounds the future is both exciting and challenging, with individuals and …

[HTML][HTML] Artificial intelligence techniques for enabling Big Data services in distribution networks: A review

S Barja-Martinez, M Aragüés-Peñalba… - … and Sustainable Energy …, 2021 - Elsevier
Artificial intelligence techniques lead to data-driven energy services in distribution power
systems by extracting value from the data generated by the deployed metering and sensing …

CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production

A Agga, A Abbou, M Labbadi, Y El Houm… - Electric Power Systems …, 2022 - Elsevier
Climate change is pushing an increasing number of nations to use green energy resources,
particularly solar power as an applicable substitute to traditional power sources. However …

Short-term photovoltaic power forecasting using an LSTM neural network and synthetic weather forecast

MS Hossain, H Mahmood - Ieee Access, 2020 - ieeexplore.ieee.org
In this paper, a forecasting algorithm is proposed to predict photovoltaic (PV) power
generation using a long short term memory (LSTM) neural network (NN). A synthetic …

A hybrid deep learning model for short-term PV power forecasting

P Li, K Zhou, X Lu, S Yang - Applied Energy, 2020 - Elsevier
The integration of PV power brings great economic and environmental benefits. However,
the high penetration of PV power may challenge the planning and operation of the existing …

Residential load forecasting based on LSTM fusing self-attention mechanism with pooling

H Zang, R Xu, L Cheng, T Ding, L Liu, Z Wei, G Sun - Energy, 2021 - Elsevier
Day-ahead residential load forecasting is crucial for electricity dispatch and demand
response in power systems. Electrical loads are characterized by volatility and uncertainty …

Taxonomy research of artificial intelligence for deterministic solar power forecasting

H Wang, Y Liu, B Zhou, C Li, G Cao, N Voropai… - Energy Conversion and …, 2020 - Elsevier
With the world-wide deployment of solar energy for a sustainable and renewable future, the
stochastic and volatile nature of solar power pose significant challenges to the reliable …

Dual stream network with attention mechanism for photovoltaic power forecasting

ZA Khan, T Hussain, SW Baik - Applied Energy, 2023 - Elsevier
The operations of renewable power generation systems highly depend on precise
Photovoltaic (PV) power forecasting, providing significant economic, and environmental …

A survey of machine learning models in renewable energy predictions

JP Lai, YM Chang, CH Chen, PF Pai - Applied Sciences, 2020 - mdpi.com
The use of renewable energy to reduce the effects of climate change and global warming
has become an increasing trend. In order to improve the prediction ability of renewable …

Deep learning in power systems research: A review

M Khodayar, G Liu, J Wang… - CSEE Journal of Power …, 2020 - ieeexplore.ieee.org
With the rapid growth of power systems measurements in terms of size and complexity,
discovering statistical patterns for a large variety of real-world applications such as …